Муниципальное бюджетное образовательное учреждение Волковская средняя общеобразовательная школа

Выписка из основной образовательной программы основного общего образования (ООП ООО)

РАБОЧАЯ ПРОГРАММА (ID 2233202)

учебного предмета «Физика»

для обучающихся 7-9 классов

Составители: Маргазов К.А.

Банников А.Г.

Учителя МБОУ Волковская СОШ

пос. Новый

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по физике на уровне основного общего образования составлена на основе положений и требований к результатам освоения на базовом уровне основной образовательной программы, представленных в ФГОС ООО, а также с учётом федеральной рабочей программы воспитания и Концепции преподавания учебного предмета «Физика».

Содержание программы по физике направлено на формирование естественно-научной грамотности обучающихся и организацию изучения физики на деятельностной основе. В программе по физике учитываются возможности учебного предмета в реализации требований ФГОС ООО к планируемым личностным и метапредметным результатам обучения, а также межпредметные связи естественно-научных учебных предметов на уровне основного общего образования.

Программа по физике устанавливает распределение учебного материала по годам обучения (по классам), предлагает примерную последовательность изучения тем, основанную на логике развития предметного содержания и учёте возрастных особенностей обучающихся.

Программа по физике разработана с целью оказания методической помощи учителю в создании рабочей программы по учебному предмету.

Физика является системообразующим для естественно-научных учебных предметов, поскольку физические законы лежат в основе процессов и явлений, изучаемых химией, биологией, астрономией и физической географией, вносит вклад в естественно-научную картину мира, предоставляет наиболее ясные образцы применения научного метода познания, то есть способа получения достоверных знаний о мире.

Одна из главных задач физического образования в структуре общего образования состоит в формировании естественно-научной грамотности и интереса к науке у обучающихся.

Изучение физики на базовом уровне предполагает овладение следующими компетентностями, характеризующими естественно-научную грамотность:

- научно объяснять явления;
- оценивать и понимать особенности научного исследования;
- интерпретировать данные и использовать научные доказательства для получения выводов.

Цели изучения физики на уровне основного общего образования определены в Концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные общеобразовательные программы, утверждённой решением Коллегии Министерства просвещения Российской Федерации (протокол от 3 декабря 2019 г. № ПК-4вн).

Цели изучения физики:

- приобретение интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;
- развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;
- формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- формирование представлений о роли физики для развития других естественных наук, техники и технологий;
- развитие представлений о возможных сферах будущей профессиональной деятельности, связанной с физикой, подготовка к дальнейшему обучению в этом направлении.

Достижение этих целей программы по физике на уровне основного общего образования обеспечивается решением следующих задач:

- приобретение знаний о дискретном строении вещества, о механических, тепловых, электрических, магнитных и квантовых явлениях:
- приобретение умений описывать и объяснять физические явления с использованием полученных знаний;
- освоение методов решения простейших расчётных задач с использованием физических моделей, творческих и практико-ориентированных задач;
- развитие умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов;
- освоение приёмов работы с информацией физического содержания, включая информацию о современных достижениях физики, анализ и критическое оценивание информации;
- знакомство со сферами профессиональной деятельности, связанными с физикой, и современными технологиями, основанными на достижениях физической науки.

На изучение физики (базовый уровень) на уровне основного общего образования отводится 238 часов: в 7 классе — 68 часов (2 часа в неделю), в 8 классе — 68 часов (2 часа в неделю), в 9 классе — 102 часа (3 часа в неделю).

Предлагаемый в программе по физике перечень лабораторных работ и опытов носит рекомендательный характер, учитель делает выбор проведения

лабораторных работ и опытов с учётом индивидуальных особенностей обучающихся, списка экспериментальных заданий, предлагаемых в рамках основного государственного экзамена по физике.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

7 КЛАСС

Раздел 1. Физика и её роль в познании окружающего мира.

Физика — наука о природе. Явления природы. Физические явления: механические, тепловые, электрические, магнитные, световые, звуковые.

Физические величины. Измерение физических величин. Физические приборы. Погрешность измерений. Международная система единиц.

Как физика и другие естественные науки изучают природу. Естественно-научный метод познания: наблюдение, постановка научного вопроса, выдвижение гипотез, эксперимент по проверке гипотез, объяснение наблюдаемого явления. Описание физических явлений с помощью моделей.

Демонстрации.

- Механические, тепловые, электрические, магнитные, световые явления.
- Физические приборы и процедура прямых измерений аналоговым и цифровым прибором.

Лабораторные работы и опыты.

- 1. Определение цены деления шкалы измерительного прибора.
- 2. Измерение расстояний.
- 3. Измерение объёма жидкости и твёрдого тела.
- 4. Определение размеров малых тел.
- Измерение температуры при помощи жидкостного термометра и датчика температуры.
- Проведение исследования по проверке гипотезы: дальность полёта шарика, пущенного горизонтально, тем больше, чем больше высота пуска.

Раздел 2. Первоначальные сведения о строении вещества.

Строение вещества: атомы и молекулы, их размеры. Опыты, доказывающие дискретное строение вещества.

Движение частиц вещества. Связь скорости движения частиц с температурой. Броуновское движение, диффузия. Взаимодействие частиц вещества: притяжение и отталкивание.

Агрегатные состояния вещества: строение газов, жидкостей и твёрдых (кристаллических) тел. Взаимосвязь между свойствами веществ в разных агрегатных состояниях и их атомно-молекулярным строением. Особенности агрегатных состояний воды.

Демонстрации.

1. Наблюдение броуновского движения.

- 2. Наблюдение диффузии.
- 3. Наблюдение явлений, объясняющихся притяжением или отталкиванием частиц вещества.

Лабораторные работы и опыты.

- 1. Оценка диаметра атома методом рядов (с использованием фотографий).
- 2. Опыты по наблюдению теплового расширения газов.
- 3. Опыты по обнаружению действия сил молекулярного притяжения.

Раздел 3. Движение и взаимодействие тел.

Механическое движение. Равномерное и неравномерное движение. Скорость. Средняя скорость при неравномерном движении. Расчёт пути и времени движения.

Явление инерции. Закон инерции. Взаимодействие тел как причина изменения скорости движения тел. Масса как мера инертности тела. Плотность вещества. Связь плотности с количеством молекул в единице объёма вещества.

Сила как характеристика взаимодействия тел. Сила упругости и закон Гука. Измерение силы с помощью динамометра. Явление тяготения и сила тяжести. Сила тяжести на других планетах. Вес тела. Невесомость. Сложение сил, направленных по одной прямой. Равнодействующая сил. Сила трения. Трение скольжения и трение покоя. Трение в природе и технике.

Демонстрации.

- 1. Наблюдение механического движения тела.
- 2. Измерение скорости прямолинейного движения.
- з. Наблюдение явления инерции.
- 4. Наблюдение изменения скорости при взаимодействии тел.
- 5. Сравнение масс по взаимодействию тел.
- 6. Сложение сил, направленных по одной прямой.

Лабораторные работы и опыты.

- 1. Определение скорости равномерного движения (шарика в жидкости, модели электрического автомобиля и так далее).
- 2. Определение средней скорости скольжения бруска или шарика по наклонной плоскости.
- з. Определение плотности твёрдого тела.
- 4. Опыты, демонстрирующие зависимость растяжения (деформации) пружины от приложенной силы.
- 5. Опыты, демонстрирующие зависимость силы трения скольжения от веса тела и характера соприкасающихся поверхностей.

Раздел 4. Давление твёрдых тел, жидкостей и газов.

Давление. Способы уменьшения и увеличения давления. Давление газа. Зависимость давления газа от объёма, температуры. Передача давления твёрдыми телами, жидкостями и газами. Закон Паскаля. Пневматические машины. Зависимость давления жидкости от глубины. Гидростатический парадокс. Сообщающиеся сосуды. Гидравлические механизмы.

Атмосфера Земли и атмосферное давление. Причины существования воздушной оболочки Земли. Опыт Торричелли. Измерение атмосферного давления. Зависимость атмосферного давления от высоты над уровнем моря. Приборы для измерения атмосферного давления.

Действие жидкости и газа на погружённое в них тело. Выталкивающая (архимедова) сила. Закон Архимеда. Плавание тел. Воздухоплавание.

Демонстрации.

- 1. Зависимость давления газа от температуры.
- 2. Передача давления жидкостью и газом.
- з. Сообщающиеся сосуды.
- 4. Гидравлический пресс.
- 5. Проявление действия атмосферного давления.
- 6. Зависимость выталкивающей силы от объёма погружённой части тела и плотности жидкости.
- 7. Равенство выталкивающей силы весу вытесненной жидкости.
- 8. Условие плавания тел: плавание или погружение тел в зависимости от соотношения плотностей тела и жидкости.

Лабораторные работы и опыты.

- 1. Исследование зависимости веса тела в воде от объёма погружённой в жидкость части тела.
- 2. Определение выталкивающей силы, действующей на тело, погружённое в жидкость.
- з. Проверка независимости выталкивающей силы, действующей на тело в жидкости, от массы тела.
- 4. Опыты, демонстрирующие зависимость выталкивающей силы, действующей на тело в жидкости, от объёма погружённой в жидкость части тела и от плотности жидкости.
- 5. Конструирование ареометра или конструирование лодки и определение её грузоподъёмности.

Раздел 5. Работа и мощность. Энергия.

Механическая работа. Мощность.

Простые механизмы: рычаг, блок, наклонная плоскость. Правило равновесия рычага. Применение правила равновесия рычага к блоку.

«Золотое правило» механики. КПД простых механизмов. Простые механизмы в быту и технике.

Механическая энергия. Кинетическая и потенциальная энергия. Превращение одного вида механической энергии в другой. Закон сохранения энергии в механике.

Демонстрации.

1. Примеры простых механизмов.

Лабораторные работы и опыты.

- 1. Определение работы силы трения при равномерном движении тела по горизонтальной поверхности.
- 2. Исследование условий равновесия рычага.
- з. Измерение КПД наклонной плоскости.
- 4. Изучение закона сохранения механической энергии.

8 КЛАСС

Раздел 6. Тепловые явления.

Основные положения молекулярно--кинетической теории строения вещества. Масса и размеры атомов и молекул. Опыты, подтверждающие основные положения молекулярно-кинетической теории.

Модели твёрдого, жидкого и газообразного состояний вещества. Кристаллические и аморфные тела. Объяснение свойств газов, жидкостей и твёрдых тел на основе положений молекулярно--кинетической теории. Смачивание и капиллярные явления. Тепловое расширение и сжатие.

Температура. Связь температуры со скоростью теплового движения частиц. Внутренняя энергия. Способы изменения внутренней энергии: теплопередача и совершение работы. Виды теплопередачи: теплопроводность, конвекция, излучение.

Количество теплоты. Удельная теплоёмкость вещества. Теплообмен и тепловое равновесие. Уравнение теплового баланса. Плавление и отвердевание кристаллических веществ. Удельная теплота плавления. Парообразование и конденсация. Испарение. Кипение. Удельная теплота парообразования. Зависимость температуры кипения от атмосферного давления.

Влажность воздуха.

Энергия топлива. Удельная теплота сгорания.

Принципы работы тепловых двигателей КПД теплового двигателя. Тепловые двигатели и защита окружающей среды.

Закон сохранения и превращения энергии в тепловых процессах.

Демонстрации.

1. Наблюдение броуновского движения.

- 2. Наблюдение диффузии.
- з. Наблюдение явлений смачивания и капиллярных явлений.
- 4. Наблюдение теплового расширения тел.
- 5. Изменение давления газа при изменении объёма и нагревании или охлаждении.
- 6. Правила измерения температуры.
- 7. Виды теплопередачи.
- 8. Охлаждение при совершении работы.
- 9. Нагревание при совершении работы внешними силами.
- 10. Сравнение теплоёмкостей различных веществ.
- 11. Наблюдение кипения.
- 12. Наблюдение постоянства температуры при плавлении.
- 13. Модели тепловых двигателей.

Лабораторные работы и опыты.

- 1. Опыты по обнаружению действия сил молекулярного притяжения.
- 2. Опыты по выращиванию кристаллов поваренной соли или сахара.
- 3. Опыты по наблюдению теплового расширения газов, жидкостей и твёрдых тел.
- 4. Определение давления воздуха в баллоне шприца.
- 5. Опыты, демонстрирующие зависимость давления воздуха от его объёма и нагревания или охлаждения.
- 6. Проверка гипотезы линейной зависимости длины столбика жидкости в термометрической трубке от температуры.
- 7. Наблюдение изменения внутренней энергии тела в результате теплопередачи и работы внешних сил.
- 8. Исследование явления теплообмена при смешивании холодной и горячей воды.
- 9. Определение количества теплоты, полученного водой при теплообмене с нагретым металлическим цилиндром.
- 10. Определение удельной теплоёмкости вещества.
- 11. Исследование процесса испарения.
- 12. Определение относительной влажности воздуха.
- 13. Определение удельной теплоты плавления льда.

Раздел 7. Электрические и магнитные явления.

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Закон Кулона (зависимость силы взаимодействия заряженных тел от величины зарядов и расстояния между телами).

Электрическое поле. Напряжённость электрического поля. Принцип суперпозиции электрических полей (на качественном уровне).

Носители электрических зарядов. Элементарный электрический заряд. Строение атома. Проводники и диэлектрики. Закон сохранения электрического заряда.

Электрический ток. Условия существования электрического тока. Источники постоянного тока. Действия электрического тока (тепловое, химическое, магнитное). Электрический ток в жидкостях и газах.

Электрическая цепь. Сила тока. Электрическое напряжение. Сопротивление проводника. Удельное сопротивление вещества. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников.

Работа и мощность электрического тока. Закон Джоуля—Ленца. Электрические цепи и потребители электрической энергии в быту. Короткое замыкание.

Взаимодействие Постоянные магниты. постоянных магнитов. Магнитное поле. Магнитное поле Земли и его значение для жизни на Земле. Опыт Эрстеда. Магнитное поле электрического Применение тока. электромагнитов в технике. Действие магнитного поля на проводник с током. Электродвигатель постоянного тока. Использование электродвигателей в технических устройствах и на транспорте.

Опыты Фарадея. Явление электромагнитной индукции. Правило Ленца. Электрогенератор. Способы получения электрической энергии. Электростанции на возобновляемых источниках энергии.

Демонстрации.

- 1. Электризация тел.
- 2. Два рода электрических зарядов и взаимодействие заряженных тел.
- з. Устройство и действие электроскопа.
- 4. Электростатическая индукция.
- 5. Закон сохранения электрических зарядов.
- 6. Проводники и диэлектрики.
- 7. Моделирование силовых линий электрического поля.
- 8. Источники постоянного тока.
- 9. Действия электрического тока.
- 10. Электрический ток в жидкости.
- 11. Газовый разряд.
- 12. Измерение силы тока амперметром.
- 13. Измерение электрического напряжения вольтметром.
- 14. Реостат и магазин сопротивлений.
- 15. Взаимодействие постоянных магнитов.
- 16. Моделирование невозможности разделения полюсов магнита.

- 17. Моделирование магнитных полей постоянных магнитов.
- 18. Опыт Эрстеда.
- 19. Магнитное поле тока. Электромагнит.
- 20. Действие магнитного поля на проводник с током.
- 21. Электродвигатель постоянного тока.
- 22. Исследование явления электромагнитной индукции.
- 23. Опыты Фарадея.
- 24. Зависимость направления индукционного тока от условий его возникновения.
- 25. Электрогенератор постоянного тока.

Лабораторные работы и опыты.

- 1. Опыты по наблюдению электризации тел индукцией и при соприкосновении.
- 2. Исследование действия электрического поля на проводники и диэлектрики.
- 3. Сборка и проверка работы электрической цепи постоянного тока.
- 4. Измерение и регулирование силы тока.
- 5. Измерение и регулирование напряжения.
- 6. Исследование зависимости силы тока, идущего через резистор, от сопротивления резистора и напряжения на резисторе.
- 7. Опыты, демонстрирующие зависимость электрического сопротивления проводника от его длины, площади поперечного сечения и материала.
- 8. Проверка правила сложения напряжений при последовательном соединении двух резисторов.
- 9. Проверка правила для силы тока при параллельном соединении резисторов.
- 10. Определение работы электрического тока, идущего через резистор.
- 11. Определение мощности электрического тока, выделяемой на резисторе.
- 12. Исследование зависимости силы тока, идущего через лампочку, от напряжения на ней.
- 13. Определение КПД нагревателя.
- 14. Исследование магнитного взаимодействия постоянных магнитов.
- 15. Изучение магнитного поля постоянных магнитов при их объединении и разделении.
- 16. Исследование действия электрического тока на магнитную стрелку.

- 17. Опыты, демонстрирующие зависимость силы взаимодействия катушки с током и магнита от силы тока и направления тока в катушке.
- 18. Изучение действия магнитного поля на проводник с током.
- 19. Конструирование и изучение работы электродвигателя.
- 20. Измерение КПД электродвигательной установки.
- 21. Опыты по исследованию явления электромагнитной индукции: исследование изменений значения и направления индукционного тока.

9 КЛАСС

Раздел 8. Механические явления.

Механическое движение. Материальная точка. Система отсчёта. Относительность механического движения. Равномерное прямолинейное движение. Средняя и мгновенная скорость тела при неравномерном движении.

Ускорение. Равноускоренное прямолинейное движение. Свободное падение. Опыты Галилея.

Равномерное движение по окружности. Период и частота обращения. Линейная и угловая скорости. Центростремительное ускорение.

Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона. Принцип суперпозиции сил.

Сила упругости. Закон Гука. Сила трения: сила трения скольжения, сила трения покоя, другие виды трения.

Сила тяжести и закон всемирного тяготения. Ускорение свободного падения. Движение планет вокруг Солнца. Первая космическая скорость. Невесомость и перегрузки.

Равновесие материальной точки. Абсолютно твёрдое тело. Равновесие твёрдого тела с закреплённой осью вращения. Момент силы. Центр тяжести.

Импульс тела. Изменение импульса. Импульс силы. Закон сохранения импульса. Реактивное движение.

Механическая работа и мощность. Работа сил тяжести, упругости, трения. Связь энергии и работы. Потенциальная энергия тела, поднятого над поверхностью земли. Потенциальная энергия сжатой пружины. Кинетическая энергия. Теорема о кинетической энергии. Закон сохранения механической энергии.

Демонстрации.

1. Наблюдение механического движения тела относительно разных тел отсчёта.

- 2. Сравнение путей и траекторий движения одного и того же тела относительно разных тел отсчёта.
- 3. Измерение скорости и ускорения прямолинейного движения.
- 4. Исследование признаков равноускоренного движения.
- 5. Наблюдение движения тела по окружности.
- 6. Наблюдение механических явлений, происходящих в системе отсчёта «Тележка» при её равномерном и ускоренном движении относительно кабинета физики.
- 7. Зависимость ускорения тела от массы тела и действующей на него силы.
- 8. Наблюдение равенства сил при взаимодействии тел.
- 9. Изменение веса тела при ускоренном движении.
- 10. Передача импульса при взаимодействии тел.
- 11. Преобразования энергии при взаимодействии тел.
- 12. Сохранение импульса при неупругом взаимодействии.
- 13. Сохранение импульса при абсолютно упругом взаимодействии.
- 14. Наблюдение реактивного движения.
- 15. Сохранение механической энергии при свободном падении.
- 16. Сохранение механической энергии при движении тела под действием пружины.

Лабораторные работы и опыты.

- 1. Конструирование тракта для разгона и дальнейшего равномерного движения шарика или тележки.
- 2. Определение средней скорости скольжения бруска или движения шарика по наклонной плоскости.
- 3. Определение ускорения тела при равноускоренном движении по наклонной плоскости.
- 4. Исследование зависимости пути от времени при равноускоренном движении без начальной скорости.
- 5. Проверка гипотезы: если при равноускоренном движении без начальной скорости пути относятся как ряд нечётных чисел, то соответствующие промежутки времени одинаковы.
- 6. Исследование зависимости силы трения скольжения от силы нормального давления.
- 7. Определение коэффициента трения скольжения.
- 8. Определение жёсткости пружины.
- 9. Определение работы силы трения при равномерном движении тела по горизонтальной поверхности.

- 10. Определение работы силы упругости при подъёме груза с использованием неподвижного и подвижного блоков.
- 11. Изучение закона сохранения энергии.

Раздел 9. Механические колебания и волны.

Колебательное движение. Основные характеристики колебаний: период, частота, амплитуда. Математический и пружинный маятники. Превращение энергии при колебательном движении.

колебания. Затухающие Вынужденные колебания. Резонанс. Механические Свойства Продольные волны. механических волн. волны. Длина волны eë распространения. поперечные И скорость Механические волны в твёрдом теле, сейсмические волны.

Звук. Громкость звука и высота тона. Отражение звука. Инфразвук и ультразвук.

Демонстрации.

- 1. Наблюдение колебаний тел под действием силы тяжести и силы упругости.
- 2. Наблюдение колебаний груза на нити и на пружине.
- з. Наблюдение вынужденных колебаний и резонанса.
- 4. Распространение продольных и поперечных волн (на модели).
- 5. Наблюдение зависимости высоты звука от частоты.
- 6. Акустический резонанс.

Лабораторные работы и опыты.

- 1. Определение частоты и периода колебаний математического маятника.
- 2. Определение частоты и периода колебаний пружинного маятника.
- з. Исследование зависимости периода колебаний подвешенного к нити груза от длины нити.
- 4. Исследование зависимости периода колебаний пружинного маятника от массы груза.
- 5. Проверка независимости периода колебаний груза, подвешенного к нити, от массы груза.
- 6. Опыты, демонстрирующие зависимость периода колебаний пружинного маятника от массы груза и жёсткости пружины.
- 7. Измерение ускорения свободного падения.

Раздел 10. Электромагнитное поле и электромагнитные волны.

Электромагнитное поле. Электромагнитные волны. Свойства электромагнитных волн. Шкала электромагнитных волн. Использование электромагнитных волн для сотовой связи.

Электромагнитная природа света. Скорость света. Волновые свойства света.

Демонстрации.

- 1. Свойства электромагнитных волн.
- 2. Волновые свойства света.

Лабораторные работы и опыты.

1. Изучение свойств электромагнитных волн с помощью мобильного телефона.

Раздел 11. Световые явления.

Лучевая модель света. Источники света. Прямолинейное распространение света. Затмения Солнца и Луны. Отражение света. Плоское зеркало. Закон отражения света.

Преломление света. Закон преломления света. Полное внутреннее отражение света. Использование полного внутреннего отражения в оптических световодах.

Линза. Ход лучей в линзе. Оптическая система фотоаппарата, микроскопа и телескопа. Глаз как оптическая система. Близорукость и дальнозоркость.

Разложение белого света в спектр. Опыты Ньютона. Сложение спектральных цветов. Дисперсия света.

Демонстрации.

- 1. Прямолинейное распространение света.
- 2. Отражение света.
- з. Получение изображений в плоском, вогнутом и выпуклом зеркалах.
- 4. Преломление света.
- 5. Оптический световод.
- 6. Ход лучей в собирающей линзе.
- 7. Ход лучей в рассеивающей линзе.
- 8. Получение изображений с помощью линз.
- 9. Принцип действия фотоаппарата, микроскопа и телескопа.
- 10. Модель глаза.
- 11. Разложение белого света в спектр.
- 12. Получение белого света при сложении света разных цветов.

Лабораторные работы и опыты.

- 1. Исследование зависимости угла отражения светового луча от угла паления.
- 2. Изучение характеристик изображения предмета в плоском зеркале.
- 3. Исследование зависимости угла преломления светового луча от угла падения на границе «воздух—стекло».

- 4. Получение изображений с помощью собирающей линзы.
- 5. Определение фокусного расстояния и оптической силы собирающей линзы.
- 6. Опыты по разложению белого света в спектр.
- 7. Опыты по восприятию цвета предметов при их наблюдении через цветовые фильтры.

Раздел 12. Квантовые явления.

Опыты Резерфорда и планетарная модель атома. Модель атома Бора. Испускание и поглощение света атомом. Кванты. Линейчатые спектры.

Радиоактивность. Альфа-, бета- и гамма-излучения. Строение атомного ядра. Нуклонная модель атомного ядра. Изотопы. Радиоактивные превращения. Период полураспада атомных ядер.

Ядерные реакции. Законы сохранения зарядового и массового чисел. Энергия связи атомных ядер. Связь массы и энергии. Реакции синтеза и деления ядер. Источники энергии Солнца и звёзд.

Ядерная энергетика. Действия радиоактивных излучений на живые организмы.

Демонстрации.

- 1. Спектры излучения и поглощения.
- 2. Спектры различных газов.
- з. Спектр водорода.
- 4. Наблюдение треков в камере Вильсона.
- 5. Работа счётчика ионизирующих излучений.
- 6. Регистрация излучения природных минералов и продуктов.

Лабораторные работы и опыты.

- 1. Наблюдение сплошных и линейчатых спектров излучения.
- 2. Исследование треков: измерение энергии частицы по тормозному пути (по фотографиям).
- з. Измерение радиоактивного фона.

Повторительно-обобщающий модуль.

Повторительно--обобщающий модуль предназначен для систематизации и обобщения предметного содержания и опыта деятельности, приобретённого при изучении всего курса физики, а также для подготовки к основному государственному экзамену по физике для обучающихся, выбравших этот учебный предмет.

При изучении данного модуля реализуются и систематизируются виды деятельности, на основе которых обеспечивается достижение предметных и метапредметных планируемых результатов обучения, формируется естественнонаучная грамотность: освоение научных методов исследования

явлений природы и техники, овладение умениями объяснять физические явления, применяя полученные знания, решать задачи, в том числе качественные и экспериментальные.

Принципиально деятельностный характер данного раздела реализуется за счёт того, что обучающиеся выполняют задания, в которых им предлагается:

на основе полученных знаний распознавать и научно объяснять физические явления в окружающей природе и повседневной жизни;

использовать научные методы исследования физических явлений, в том числе для проверки гипотез и получения теоретических выводов;

объяснять научные основы наиболее важных достижений современных технологий, например, практического использования различных источников энергии на основе закона превращения и сохранения всех известных видов энергии.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ФИЗИКЕ НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

Изучение физики на уровне основного общего образования направлено на достижение личностных, метапредметных и предметных образовательных результатов.

В результате изучения физики на уровне основного общего образования у обучающегося будут сформированы следующие личностные результаты в части:

• 1) патриотического воспитания:

- проявление интереса к истории и современному состоянию российской физической науки;
- – ценностное отношение к достижениям российских учёных--физиков;
- 2) гражданского и духовно-нравственного воспитания:
- – готовность к активному участию в обсуждении общественно значимых и этических проблем, связанных с практическим применением достижений физики;
- осознание важности морально--этических принципов в деятельности учёного;
- 3) эстетического воспитания:
- — восприятие эстетических качеств физической науки: её гармоничного построения, строгости, точности, лаконичности;
- 4) ценности научного познания:
- осознание ценности физической науки как мощного инструмента познания мира, основы развития технологий, важнейшей составляющей культуры;
- развитие научной любознательности, интереса к исследовательской деятельности;
- 5) формирования культуры здоровья и эмоционального благополучия:
- осознание ценности безопасного образа жизни в современном технологическом мире, важности правил безопасного поведения на транспорте, на дорогах, с электрическим и тепловым оборудованием в домашних условиях;
- – сформированность навыка рефлексии, признание своего права на ошибку и такого же права у другого человека;
- 6) трудового воспитания:
- активное участие в решении практических задач (в рамках семьи, образовательной организации, города, края) технологической и

социальной направленности, требующих в том числе и физических знаний;

- – интерес к практическому изучению профессий, связанных с физикой;
- 7) экологического воспитания:
- — ориентация на применение физических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды;
- осознание глобального характера экологических проблем и путей их решения;
- 8) адаптации к изменяющимся условиям социальной и природной среды:
- – потребность во взаимодействии при выполнении исследований и проектов физической направленности, открытость опыту и знаниям других;
- повышение уровня своей компетентности через практическую деятельность;
- — потребность в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы о физических объектах и явлениях;
- осознание дефицитов собственных знаний и компетентностей в области физики;
- – планирование своего развития в приобретении новых физических знаний;
- — стремление анализировать и выявлять взаимосвязи природы, общества и экономики, в том числе с использованием физических знаний;
- — оценка своих действий с учётом влияния на окружающую среду, возможных глобальных последствий.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В результате освоения программы по физике на уровне основного общего образования у обучающегося будут сформированы **метапредметные результаты**, включающие познавательные универсальные учебные действия, коммуникативные универсальные учебные действия, регулятивные универсальные учебные учебные действия.

Познавательные универсальные учебные действия

Базовые логические действия:

- выявлять и характеризовать существенные признаки объектов (явлений);
- устанавливать существенный признак классификации, основания для обобщения и сравнения;
- выявлять закономерности и противоречия в рассматриваемых фактах, данных и наблюдениях, относящихся к физическим явлениям;
- выявлять причинно--следственные связи при изучении физических явлений и процессов, делать выводы с использованием дедуктивных и индуктивных умозаключений, выдвигать гипотезы о взаимосвязях физических величин;
- самостоятельно выбирать способ решения учебной физической задачи (сравнение нескольких вариантов решения, выбор наиболее подходящего с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

- использовать вопросы как исследовательский инструмент познания;
- проводить по самостоятельно составленному плану опыт, несложный физический эксперимент, небольшое исследование физического явления;
- оценивать на применимость и достоверность информацию, полученную в ходе исследования или эксперимента;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, опыта, исследования;
- прогнозировать возможное дальнейшее развитие физических процессов, а также выдвигать предположения об их развитии в новых условиях и контекстах.

Работа с информацией:

- применять различные методы, инструменты и запросы при поиске и отборе информации или данных с учётом предложенной учебной физической задачи;
- анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- самостоятельно выбирать оптимальную форму представления информации и иллюстрировать решаемые задачи несложными схемами, диаграммами, иной графикой и их комбинациями.

Коммуникативные универсальные учебные действия:

• в ходе обсуждения учебного материала, результатов лабораторных работ и проектов задавать вопросы по существу обсуждаемой темы и высказывать идеи, нацеленные на решение задачи и поддержание благожелательности общения;

- сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций;
- выражать свою точку зрения в устных и письменных текстах;
- публично представлять результаты выполненного физического опыта (эксперимента, исследования, проекта);
- понимать и использовать преимущества командной и индивидуальной работы при решении конкретной физической проблемы;
- принимать цели совместной деятельности, организовывать действия по её достижению: распределять роли, обсуждать процессы и результаты совместной работы, обобщать мнения нескольких людей;
- выполнять свою часть работы, достигая качественного результата по своему направлению и координируя свои действия с другими членами команды;
- оценивать качество своего вклада в общий продукт по критериям, самостоятельно сформулированным участниками взаимодействия.

Регулятивные универсальные учебные действия

Самоорганизация:

- выявлять проблемы в жизненных и учебных ситуациях, требующих для решения физических знаний;
- ориентироваться в различных подходах принятия решений (индивидуальное, принятие решения в группе, принятие решений группой);
- самостоятельно составлять алгоритм решения физической задачи или плана исследования с учётом имеющихся ресурсов и собственных возможностей, аргументировать предлагаемые варианты решений;
- делать выбор и брать ответственность за решение.

Самоконтроль, эмоциональный интеллект:

- давать адекватную оценку ситуации и предлагать план её изменения;
- объяснять причины достижения (недостижения) результатов деятельности, давать оценку приобретённому опыту;
- вносить коррективы в деятельность (в том числе в ход выполнения физического исследования или проекта) на основе новых обстоятельств, изменившихся ситуаций, установленных ошибок, возникших трудностей;
- оценивать соответствие результата цели и условиям;
- ставить себя на место другого человека в ходе спора или дискуссии на научную тему, понимать мотивы, намерения и логику другого;

• признавать своё право на ошибку при решении физических задач или в утверждениях на научные темы и такое же право другого.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в 7 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

- использовать понятия: физические И химические явления, наблюдение, эксперимент, модель, гипотеза, единицы физических величин, атом, молекула, агрегатные состояния вещества (твёрдое, газообразное), механическое движение (равномерное, неравномерное, прямолинейное), траектория, равнодействующая сила, деформация (упругая, пластическая), невесомость, сообщающиеся сосуды;
- различать явления (диффузия, тепловое движение частиц вещества, равномерное движение, неравномерное движение, инерция, взаимодействие тел, равновесие твёрдых тел с закреплённой осью вращения, передача давления твёрдыми телами, жидкостями и атмосферное газами, давление, плавание превращения тел. механической энергии) по описанию их характерных свойств и на основе опытов, демонстрирующих данное физическое явление;
- распознавать проявление изученных физических явлений в окружающем мире, в том числе физические явления в природе: примеры движения с различными скоростями в живой и неживой природе, действие силы трения в природе и технике, влияние атмосферного давления на живой организм, плавание рыб, рычаги в теле человека, при этом переводить практическую задачу в учебную, выделять существенные свойства (признаки) физических явлений;
- описывать изученные свойства тел и физические явления, используя физические величины (масса, объём, плотность вещества, время, путь, скорость, средняя скорость, сила упругости, сила тяжести, вес тела, сила трения, давление (твёрдого тела, жидкости, газа), выталкивающая сила, механическая работа, мощность, плечо силы, коэффициент полезного действия механизмов, кинетическая и потенциальная энергия), при описании правильно трактовать физический смысл используемых величин, обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами, строить графики изученных зависимостей физических величин;

- характеризовать свойства тел, физические явления и процессы, используя правила сложения сил (вдоль одной прямой), закон Гука, закон Паскаля, закон Архимеда, правило равновесия рычага (блока), «золотое правило» механики, закон сохранения механической энергии, при этом давать словесную формулировку закона и записывать его математическое выражение;
- объяснять физические явления, процессы и свойства тел, в том числе и в контексте ситуаций практико-ориентированного характера: выявлять причинно--следственные связи, строить объяснение из 1–2 логических шагов с опорой на 1–2 изученных свойства физических явлений, физических закона или закономерности;
- решать расчётные задачи в 1–2 действия, используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, подставлять физические величины в формулы и проводить расчёты, находить справочные данные, необходимые для решения задач, оценивать реалистичность полученной физической величины;
- распознавать проблемы, которые можно решить при помощи физических методов, в описании исследования выделять проверяемое предположение (гипотезу), различать и интерпретировать полученный результат, находить ошибки в ходе опыта, делать выводы по его результатам;
- проводить опыты по наблюдению физических явлений или физических свойств тел: формулировать проверяемые предположения, собирать установку из предложенного оборудования, записывать ход опыта и формулировать выводы;
- выполнять прямые измерения расстояния, времени, массы тела, объёма, силы и температуры с использованием аналоговых и цифровых приборов, записывать показания приборов с учётом заданной абсолютной погрешности измерений;
- проводить исследование зависимости одной физической величины от другой с использованием прямых измерений (зависимости пути равномерно движущегося тела от времени движения тела, силы трения скольжения от веса тела, качества обработки поверхностей тел и независимости силы трения от площади соприкосновения тел, силы упругости от удлинения пружины, выталкивающей силы от объёма погружённой части тела и от плотности жидкости, её независимости от плотности тела, от глубины, на которую погружено тело, условий плавания тел, условий равновесия рычага и блоков), участвовать в

планировании учебного исследования, собирать установку и выполнять измерения, следуя предложенному плану, фиксировать результаты полученной зависимости физических величин в виде предложенных таблиц и графиков, делать выводы по результатам исследования;

- проводить косвенные измерения физических величин (плотность вещества жидкости и твёрдого тела, сила трения скольжения, давление воздуха, выталкивающая сила, действующая на погружённое в жидкость тело, коэффициент полезного действия простых механизмов), следуя предложенной инструкции: при выполнении измерений собирать экспериментальную установку и вычислять значение искомой величины;
- соблюдать правила техники безопасности при работе с лабораторным оборудованием;
- указывать принципы действия приборов и технических устройств: весы, термометр, динамометр, сообщающиеся сосуды, барометр, рычаг, подвижный и неподвижный блок, наклонная плоскость;
- характеризовать принципы действия изученных приборов и технических устройств с опорой на их описания (в том числе: подшипники, устройство водопровода, гидравлический пресс, манометр, высотомер, поршневой насос, ареометр), используя знания о свойствах физических явлений и необходимые физические законы и закономерности;
- приводить примеры (находить информацию о примерах) практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- осуществлять отбор источников информации в Интернете в соответствии с заданным поисковым запросом, на основе имеющихся знаний и путём сравнения различных источников выделять информацию, которая является противоречивой или может быть недостоверной;
- использовать при выполнении учебных заданий научно--популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет, владеть приёмами конспектирования текста, преобразования информации из одной знаковой системы в другую;
- создавать собственные краткие письменные и устные сообщения на основе 2–3 источников информации физического содержания, в том

числе публично делать краткие сообщения о результатах проектов или учебных исследований, при этом грамотно использовать изученный понятийный аппарат курса физики, сопровождать выступление презентацией;

• при выполнении учебных проектов и исследований распределять обязанности в группе в соответствии с поставленными задачами, следить за выполнением плана действий, адекватно оценивать собственный вклад в деятельность группы, выстраивать коммуникативное взаимодействие, учитывая мнение окружающих.

К концу обучения **в 8 классе** предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

- использовать понятия: масса и размеры молекул, тепловое движение атомов и молекул, агрегатные состояния вещества, кристаллические и аморфные тела, насыщенный и ненасыщенный пар, влажность воздуха, температура, внутренняя энергия, тепловой двигатель, элементарный электрический заряд, электрическое поле, проводники и диэлектрики, постоянный электрический ток, магнитное поле;
- различать явления (тепловое расширение и сжатие, теплопередача, тепловое равновесие, смачивание, капиллярные явления, испарение, конденсация, плавление, кристаллизация (отвердевание), кипение, теплопередача (теплопроводность, конвекция, излучение), электризация тел, взаимодействие зарядов, действия электрического тока, короткое замыкание, взаимодействие магнитов, действие магнитного поля на проводник с током, электромагнитная индукция) по описанию их характерных свойств и на основе опытов, демонстрирующих данное физическое явление;
- распознавать проявление изученных физических явлений в окружающем мире, в том числе физические явления в природе: поверхностное натяжение и капиллярные явления в природе, кристаллы в природе, излучение Солнца, замерзание водоёмов, морские бризы, образование росы, тумана, инея, снега, электрические явления в атмосфере, электричество живых организмов, магнитное поле Земли, дрейф полюсов, роль магнитного поля для жизни на Земле, полярное сияние, при этом переводить практическую задачу в учебную, выделять существенные свойства (признаки) физических явлений;
- описывать изученные свойства тел и физические явления, используя физические величины (температура, внутренняя энергия, количество теплоты, удельная теплоёмкость вещества, удельная теплота

плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия тепловой машины, относительная влажность воздуха, электрический заряд, сила тока, электрическое напряжение, сопротивление проводника, сопротивление работа удельное вещества, мощность электрического тока), при описании правильно трактовать физический смысл используемых величин, обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами, строить графики изученных зависимостей физических величин;

- характеризовать свойства тел, физические явления и процессы, используя основные положения молекулярно--кинетической теории строения вещества, принцип суперпозиции полей (на качественном уровне), закон сохранения заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон сохранения энергии, при этом давать словесную формулировку закона и записывать его математическое выражение;
- объяснять физические процессы и свойства тел, в том числе и в контексте ситуаций практико-ориентированного характера: выявлять причинно-следственные связи, строить объяснение из 1–2 логических шагов с опорой на 1–2 изученных свойства физических явлений, физических законов или закономерностей;
- решать расчётные задачи в 2–3 действия, используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, выявлять недостаток данных для решения задачи, выбирать законы и формулы, необходимые для её решения, проводить расчёты и сравнивать полученное значение физической величины с известными данными;
- распознавать проблемы, которые можно решить при помощи физических методов, используя описание исследования, выделять проверяемое предположение, оценивать правильность порядка проведения исследования, делать выводы;
- по наблюдению физических явлений проводить ОПЫТЫ ИЛИ физических свойств тел (капиллярные явления, зависимость давления воздуха от его объёма, температуры, скорости процесса остывания и нагревания при излучении от цвета излучающей (поглощающей) поверхности, скорость испарения воды от температуры жидкости и площади её поверхности, электризация тел и взаимодействие электрических зарядов, взаимодействие постоянных магнитов,

- визуализация магнитных полей постоянных магнитов, действия магнитного поля на проводник с током, свойства электромагнита, свойства электродвигателя постоянного тока): формулировать проверяемые предположения, собирать установку из предложенного оборудования, описывать ход опыта и формулировать выводы;
- выполнять прямые измерения температуры, относительной влажности воздуха, силы тока, напряжения с использованием аналоговых приборов и датчиков физических величин, сравнивать результаты измерений с учётом заданной абсолютной погрешности;
- проводить исследование зависимости одной физической величины от использованием прямых измерений другой (зависимость сопротивления проводника от его длины, площади поперечного сечения и удельного сопротивления вещества проводника, силы тока, идущего через проводник, OT напряжения на проводнике, исследование последовательного И параллельного соединений проводников): планировать исследование, собирать установку и выполнять измерения, следуя предложенному плану, фиксировать результаты полученной зависимости в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин (удельная теплоёмкость вещества, сопротивление проводника, работа и мощность электрического тока): планировать измерения, собирать экспериментальную установку, следуя предложенной инструкции, и вычислять значение величины;
- соблюдать правила техники безопасности при работе с лабораторным оборудованием;
- характеризовать принципы действия изученных приборов и технических устройств с опорой на их описания (в том числе: система отопления домов, гигрометр, паровая турбина, амперметр, вольтметр, счётчик электрической энергии, электроосветительные приборы, нагревательные электроприборы (примеры), электрические предохранители, электромагнит, электродвигатель постоянного тока), используя знания о свойствах физических явлений и необходимые физические закономерности;
- распознавать простые технические устройства и измерительные приборы по схемам и схематичным рисункам (жидкостный термометр, термос, психрометр, гигрометр, двигатель внутреннего сгорания, электроскоп, реостат), составлять схемы электрических

- цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей;
- приводить примеры (находить информацию о примерах)
 практического использования физических знаний в повседневной
 жизни для обеспечения безопасности при обращении с приборами и
 техническими устройствами, сохранения здоровья и соблюдения
 норм экологического поведения в окружающей среде;
- осуществлять поиск информации физического содержания в Интернете, на основе имеющихся знаний и путём сравнения дополнительных источников выделять информацию, которая является противоречивой или может быть недостоверной;
- использовать при выполнении учебных заданий научно--популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет, владеть приёмами конспектирования текста, преобразования информации из одной знаковой системы в другую;
- создавать собственные письменные и краткие устные сообщения, обобщая информацию из нескольких источников физического содержания, в том числе публично представлять результаты проектной или исследовательской деятельности, при этом грамотно использовать изученный понятийный аппарат курса физики, сопровождать выступление презентацией;
- при выполнении учебных проектов и исследований физических процессов распределять обязанности в группе в соответствии с поставленными задачами, следить за выполнением плана действий и корректировать его, адекватно оценивать собственный вклад в деятельность группы, выстраивать коммуникативное взаимодействие, проявляя готовность разрешать конфликты.

К концу обучения в 9 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

• использовать понятия: система отсчёта, материальная точка, траектория, относительность механического движения, деформация (упругая, пластическая), трение, центростремительное ускорение, невесомость и перегрузки, центр тяжести, абсолютно твёрдое тело, центр тяжести твёрдого тела, равновесие, механические колебания и волны, звук, инфразвук и ультразвук, электромагнитные волны, шкала электромагнитных волн, свет, близорукость и дальнозоркость, спектры испускания и поглощения, альфа-, бета- и гамма-излучения, изотопы, ядерная энергетика;

- различать явления (равномерное и неравномерное прямолинейное движение, равноускоренное прямолинейное движение, свободное падение тел, равномерное движение по окружности, взаимодействие тел, реактивное движение, колебательное движение (затухающие и вынужденные колебания), резонанс, волновое движение, отражение звука, прямолинейное распространение, отражение и преломление света, полное внутреннее отражение света, разложение белого света в спектр и сложение спектральных цветов, дисперсия света, естественная радиоактивность, возникновение линейчатого спектра излучения) по описанию их характерных свойств и на основе опытов, демонстрирующих данное физическое явление;
- проявление изученных физических распознавать явлений окружающем мире (в том числе физические явления в природе: приливы и отливы, движение планет Солнечной системы, реактивное восприятие звуков движение живых организмов, животными, землетрясение, сейсмические волны, цунами, эхо, цвета тел, оптические явления в природе, биологическое действие видимого, ультрафиолетового и рентгеновского излучений, естественный радиоактивный фон, космические лучи, радиоактивное излучение природных минералов, действие радиоактивных излучений организм человека), при этом переводить практическую задачу в учебную, выделять существенные свойства (признаки) физических явлений;
- описывать изученные свойства тел и физические явления, используя физические величины (средняя и мгновенная скорость тела при неравномерном движении, ускорение, перемещение, путь, угловая скорость, сила трения, сила упругости, сила тяжести, ускорение свободного падения, вес тела, импульс тела, импульс силы, механическая работа и мощность, потенциальная энергия тела, поднятого над поверхностью земли, потенциальная энергия сжатой пружины, кинетическая энергия, полная механическая энергия, период и частота колебаний, длина волны, громкость звука и высота тона, скорость света, показатель преломления среды), при описании правильно трактовать физический смысл используемых величин, обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами, строить графики изученных зависимостей физических величин;
- характеризовать свойства тел, физические явления и процессы, используя закон сохранения энергии, закон всемирного тяготения,

- принцип суперпозиции сил, принцип относительности Галилея, законы Ньютона, закон сохранения импульса, законы отражения и преломления света, законы сохранения зарядового и массового чисел при ядерных реакциях, при этом давать словесную формулировку закона и записывать его математическое выражение;
- объяснять физические процессы и свойства тел, в том числе и в контексте ситуаций практико-ориентированного характера: выявлять причинно--следственные связи, строить объяснение из 2–3 логических шагов с опорой на 2–3 изученных свойства физических явлений, физических законов или закономерностей;
- решать расчётные задачи (опирающиеся на систему из 2–3 уравнений), используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, выявлять недостающие или избыточные данные, выбирать законы и формулы, необходимые для решения, проводить расчёты и оценивать реалистичность полученного значения физической величины;
- распознавать проблемы, которые можно решить при помощи физических методов, используя описание исследования, выделять проверяемое предположение, оценивать правильность порядка проведения исследования, делать выводы, интерпретировать результаты наблюдений и опытов;
- наблюдению физических проводить ОПЫТЫ ПО явлений физических свойств тел (изучение второго закона Ньютона, закона сохранения энергии, зависимость периода колебаний пружинного маятника от массы груза и жёсткости пружины и независимость от амплитуды малых колебаний, прямолинейное распространение света, разложение белого света в спектр, изучение свойств изображения в плоском зеркале и свойств изображения предмета в собирающей линзе, наблюдение сплошных и линейчатых спектров излучения): самостоятельно собирать избыточного установку ИЗ набора оборудования, описывать ход результаты, опыта И его формулировать выводы;
- проводить при необходимости серию прямых измерений, определяя среднее значение измеряемой величины (фокусное расстояние собирающей линзы), обосновывать выбор способа измерения (измерительного прибора);
- проводить исследование зависимостей физических величин с использованием прямых измерений (зависимость пути от времени

при равноускоренном движении без начальной скорости, периода колебаний математического маятника от длины нити, зависимости угла отражения света от угла падения и угла преломления от угла падения): планировать исследование, самостоятельно собирать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

- проводить косвенные измерения физических величин (средняя ускорение тела при равноускоренном скорость движении, ускорение свободного падения, жёсткость пружины, коэффициент трения скольжения, механическая работа и мощность, частота и период колебаний математического и пружинного маятников, собирающей оптическая сила линзы, радиоактивный планировать измерения, собирать экспериментальную установку и выполнять измерения, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учётом заданной погрешности измерений;
- соблюдать правила техники безопасности при работе с лабораторным оборудованием;
- различать основные признаки изученных физических моделей: материальная точка, абсолютно твёрдое тело, точечный источник света, луч, тонкая линза, планетарная модель атома, нуклонная модель атомного ядра;
- характеризовать принципы действия изученных приборов И технических устройств с опорой на их описания (в том числе: спидометр, датчики положения, расстояния и ускорения, ракета, фотоаппарат, оптические эхолот, очки, перископ, спектроскоп, дозиметр, камера Вильсона), используя знания о свойствах физических явлений И необходимые физические закономерности;
- использовать схемы и схематичные рисунки изученных технических устройств, измерительных приборов и технологических процессов при решении учебно--практических задач, оптические схемы для построения изображений в плоском зеркале и собирающей линзе;
- приводить примеры (находить информацию о примерах) практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

- осуществлять поиск информации физического содержания в Интернете, самостоятельно формулируя поисковый запрос, находить пути определения достоверности полученной информации на основе имеющихся знаний и дополнительных источников;
- использовать при выполнении учебных заданий научно--популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет, владеть приёмами конспектирования текста, преобразования информации из одной знаковой системы в другую;
- создавать собственные письменные и устные сообщения на основе информации из нескольких источников физического содержания, публично представлять результаты проектной или исследовательской деятельности, при этом грамотно использовать изученный понятийный аппарат изучаемого раздела физики и сопровождать выступление презентацией с учётом особенностей аудитории сверстников.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 7 КЛАСС

№ п/п	Наименование разделов и тем программы	Количество часов			Электронные			
		Всего	Контрольные работы	Практические работы	(цифровые) образовательные ресурсы			
Раздел	Раздел 1. Физика и её роль в познании окружающего мира							
1.1	Физика - наука о природе	2			Библиотека ЦОК https://m.edsoo.ru/7f416194			
1.2	Физические величины	2		1	Библиотека ЦОК https://m.edsoo.ru/7f416194			
1.3	Естественнонаучный метод познания	2		1	Библиотека ЦОК https://m.edsoo.ru/7f416194			
Итого	Итого по разделу							
Раздел	Раздел 2. Первоначальные сведения о строении вещества							
2.1	Строение вещества	1			Библиотека ЦОК https://m.edsoo.ru/7f416194			
2.2	Движение и взаимодействие частиц вещества	2		1	Библиотека ЦОК https://m.edsoo.ru/7f416194			
2.3	Агрегатные состояния вещества	2			Библиотека ЦОК https://m.edsoo.ru/7f416194			
Итого	Итого по разделу							
Раздел	13. Движение и взаимодействие тел							
3.1	Механическое движение	3			Библиотека ЦОК https://m.edsoo.ru/7f416194			
3.2	Инерция, масса, плотность	4		1	Библиотека ЦОК			

					https://m.edsoo.ru/7f416194
3.3	Сила. Виды сил	14	1	2	Библиотека ЦОК https://m.edsoo.ru/7f416194
Итого по разделу		21			
Разде	ел 4. Давление твёрдых тел, жидкостей и газов	}			
4.1	Давление. Передача давления твёрдыми телами, жидкостями и газами	3			Библиотека ЦОК https://m.edsoo.ru/7f416194
4.2	Давление жидкости	5			Библиотека ЦОК https://m.edsoo.ru/7f416194
4.3	Атмосферное давление	6			Библиотека ЦОК https://m.edsoo.ru/7f416194
4.4	Действие жидкости и газа на погружённое в них тело	7	1	3	Библиотека ЦОК https://m.edsoo.ru/7f416194
Итого по разделу		21			
Разде	гл 5. Работа и мощность. Энергия				
5.1	Работа и мощность	3		1	Библиотека ЦОК https://m.edsoo.ru/7f416194
5.2	Простые механизмы	5		1	Библиотека ЦОК https://m.edsoo.ru/7f416194
5.3	Механическая энергия	4	1	1	Библиотека ЦОК https://m.edsoo.ru/7f416194
Итого по разделу		12			
Резервное время		3			
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		68	3	12	

8 КЛАСС

№ п/п	Наименование разделов и тем программы	Количество часов			Электронные
		Всего	Контрольные работы	Практические работы	(цифровые) образовательные ресурсы
Раздел	1. Тепловые явления				
1.1	Строение и свойства вещества	7			Библиотека ЦОК https://m.edsoo.ru/7f4181ce
1.2	Тепловые процессы	21	1	5	Библиотека ЦОК https://m.edsoo.ru/7f4181ce
Итого п	Итого по разделу				
Раздел 2	2. Электрические и магнитные явления	l .			
2.1	Электрические заряды. Заряженные тела и их взаимодействие	7		1	Библиотека ЦОК https://m.edsoo.ru/7f4181ce
2.2	Постоянный электрический ток	20	1	7	Библиотека ЦОК https://m.edsoo.ru/7f4181ce
2.3	Магнитные явления	6	1	1.5	Библиотека ЦОК https://m.edsoo.ru/7f4181ce
2.4	Электромагнитная индукция	4			Библиотека ЦОК https://m.edsoo.ru/7f4181ce
Итого по разделу		37		,	
Резервное время		3			
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		68	3	14.5	

9 КЛАСС

№ п/п	Наименование разделов и тем программы	Количество часов			Электронные
		Всего	Контрольные работы	Практические работы	(цифровые) образовательные ресурсы
Раздел	1. Механические явления				
1.1	Механическое движение и способы его описания	10		1	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
1.2	Взаимодействие тел	20	1	3	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
1.3	Законы сохранения	10		3	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
Итого п	Итого по разделу				
Раздел 2	2. Механические колебания и волны				
2.1	Механические колебания	7		3	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
2.2	Механические волны. Звук	8	1	3	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
Итого п	Итого по разделу				
Раздел 3	3. Электромагнитное поле и электромагні	тные волны			
3.1	Электромагнитное поле и электромагнитные волны	6		2	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
Итого по разделу		6			
Раздел (4. Световые явления	-			
4.1	Законы распространения света	6		2	Библиотека ЦОК

					https://m.edsoo.ru/7f41a4a6
4.2	Линзы и оптические приборы	6		3	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
4.3	Разложение белого света в спектр	3		2	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
Итого і	по разделу	15			
Раздел	5. Квантовые явления		-		
5.1	Испускание и поглощение света атомом	4		1	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
5.2	Строение атомного ядра	6		1	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
5.3	Ядерные реакции	7	1	1	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
Итого і	по разделу	17			
Раздел	6. Повторительно-обобщающий модуль				
6.1	Повторение и обобщение содержания курса физики за 7-9 класс	9		2	Библиотека ЦОК https://m.edsoo.ru/7f41a4a6
Итого і	по разделу	9			
ОБЩЕ	Е КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	102	3	27	

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ 7 КЛАСС

		Количество ч	насов	Электронные	
№ п/п	Тема урока	Всего	Контрольные работы	Практические работы	цифровые образовательные ресурсы
1	Физика — наука о природе. Явления природы	1			
2	Физические явления	1			
3	Физические величины и их измерение	1			
4	Урок-исследование "Измерение температуры при помощи жидкостного термометра и датчика температуры"	1		1	
5	Методы научного познания. Описание физических явлений с помощью моделей	1			Библиотека ЦОК https://m.edsoo.ru/ff09f72a
6	Урок-исследование "Проверка гипотезы: дальность полёта шарика, пущенного горизонтально, тем больше, чем больше высота пуска"	1		1	
7	Строение вещества. Опыты, доказывающие дискретное строение вещества	1			Библиотека ЦОК https://m.edsoo.ru/ff09fe0a
8	Движение частиц вещества	1			Библиотека ЦОК https://m.edsoo.ru/ff0a013e
9	Урок-исследование «Опыты по наблюдению теплового расширения газов»	1		1	

10	Агрегатные состояния вещества	1	
11	Особенности агрегатных состояний воды. Обобщение по разделу «Первоначальные сведения о строении вещества»	1	Библиотека ЦОК https://m.edsoo.ru/ff0a0378
12	Механическое движение. Равномерное и неравномерное движение	1	Библиотека ЦОК https://m.edsoo.ru/ff0a05c6
13	Скорость. Единицы скорости	1	Библиотека ЦОК https://m.edsoo.ru/ff0a079c
14	Расчет пути и времени движения	1	Библиотека ЦОК https://m.edsoo.ru/ff0a0ae4
15	Инерция. Масса — мера инертности тел	1	Библиотека ЦОК https://m.edsoo.ru/ff0a0c10
16	Плотность вещества. Расчет массы и объема тела по его плотности	1	Библиотека ЦОК https://m.edsoo.ru/ff0a0fee
17	Лабораторная работа «Определение плотности твёрдого тела»	1	1
18	Решение задач по теме "Плотность вещества"	1	Библиотека ЦОК https://m.edsoo.ru/ff0a123c
19	Сила как характеристика взаимодействия тел. Сила упругости. Закон Гука	1	
20	Лабораторная работа «Изучение зависимости растяжения (деформации) пружины от приложенной силы»	1	1
21	Явление тяготения. Сила тяжести	1	
22	Связь между силой тяжести и массой тела. Вес тела. Решение задач по теме "Сила тяжести"	1	Библиотека ЦОК https://m.edsoo.ru/ff0a1778
23	Сила тяжести на других планетах.	1	Библиотека ЦОК

	Физические характеристики планет				https://m.edsoo.ru/ff0a1502
24	Измерение сил. Динамометр	1			Библиотека ЦОК https://m.edsoo.ru/ff0a18cc
25	Вес тела. Невесомость	1			Библиотека ЦОК https://m.edsoo.ru/ff0a1778
26	Сложение двух сил, направленных по одной прямой. Равнодействующая сил	1			Библиотека ЦОК https://m.edsoo.ru/ff0a1a70
27	Решение задач по теме "Равнодействующая сил"	1			
28	Сила трения и её виды. Трение в природе и технике	1			Библиотека ЦОК https://m.edsoo.ru/ff0a1b9c
29	Лабораторная работа «Изучение зависимости силы трения скольжения от силы давления и характера соприкасающихся поверхностей»	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0a1cc8
30	Решение задач на определение равнодействующей силы	1			
31	Решение задач по темам: «Вес тела», «Графическое изображение сил», «Силы», «Равнодействующая сил»	1			Библиотека ЦОК https://m.edsoo.ru/ff0a1de0
32	Контрольная работа по темам: «Механическое движение», «Масса, плотность», «Вес тела», «Графическое изображение сил», «Силы»	1	1		
33	Давление. Способы уменьшения и увеличения давления	1			Библиотека ЦОК https://m.edsoo.ru/ff0a20a6
34	Давление газа. Зависимость давления газа от объёма, температуры	1			Библиотека ЦОК https://m.edsoo.ru/ff0a2376

35	Передача давления твёрдыми телами, жидкостями и газами. Закон Паскаля	1		Библиотека ЦОК https://m.edsoo.ru/ff0a25b0
36	Давление в жидкости и газе, вызванное действием силы тяжести	1		Библиотека ЦОК https://m.edsoo.ru/ff0a2718
37	Решение задач по теме «Давление в жидкости и газе. Закон Паскаля»	1		Библиотека ЦОК https://m.edsoo.ru/ff0a2826
38	Сообщающиеся сосуды	1		Библиотека ЦОК https://m.edsoo.ru/ff0a2970
39	Гидравлический пресс	1		Библиотека ЦОК https://m.edsoo.ru/ff0a3136
40	Манометры. Поршневой жидкостный насос	1		
41	Атмосфера Земли и причины её существования	1		Библиотека ЦОК https://m.edsoo.ru/ff0a2b5a
42	Вес воздуха. Атмосферное давление	1		Библиотека ЦОК https://m.edsoo.ru/ff0a2b5a
43	Измерение атмосферного давления. Опыт Торричелли	1		Библиотека ЦОК https://m.edsoo.ru/ff0a2da8
44	Зависимость атмосферного давления от высоты над уровнем моря	1		Библиотека ЦОК https://m.edsoo.ru/ff0a2fc4
45	Барометр-анероид. Атмосферное давление на различных высотах	1		Библиотека ЦОК https://m.edsoo.ru/ff0a2fc4
46	Решение задач по теме " Атмосферное давление"	1		
47	Действие жидкости и газа на погруженное в них тело. Архимедова сила	1		Библиотека ЦОК https://m.edsoo.ru/ff0a3276
48	Лабораторная работа «Определение выталкивающей силы, действующей на	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0a33fc

	тело, погруженное в жидкость»				
49	Лабораторная работа по теме «Исследование зависимости веса тела в воде от объёма погруженной в жидкость части тела»	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0a3514
50	Плавание тел	1			Библиотека ЦОК https://m.edsoo.ru/ff0a3a96
51	Лабораторная работа "Конструирование ареометра или конструирование лодки и определение её грузоподъёмности"	1		1	
52	Решение задач по темам: «Плавание судов. Воздухоплавание», «Давление твердых тел, жидкостей и газов»	1			Библиотека ЦОК https://m.edsoo.ru/ff0a3654
53	Контрольная работа по теме «Давление твердых тел, жидкостей и газов»	1	1		
54	Механическая работа	1			Библиотека ЦОК https://m.edsoo.ru/ff0a3f82
55	Мощность. Единицы мощности	1			Библиотека ЦОК https://m.edsoo.ru/ff0a3f82
56	Урок-исследование "Расчёт мощности, развиваемой при подъёме по лестнице"	1		1	
57	Простые механизмы. Рычаг. Равновесие сил на рычаге	1			
58	Рычаги в технике, быту и природе. Лабораторная работа «Исследование условий равновесия рычага»	1		0.5	Библиотека ЦОК https://m.edsoo.ru/ff0a478e
59	Решение задач по теме «Условия равновесия рычага»	1			Библиотека ЦОК https://m.edsoo.ru/ff0a48a6

60	Коэффициент полезного действия механизма. Лабораторная работа «Измерение КПД наклонной плоскости»	1		0.5	
61	Решение задач по теме "Работа, мощность, КПД"	1			Библиотека ЦОК https://m.edsoo.ru/ff0a4c48
62	Механическая энергия. Кинетическая и потенциальная энергия	1			Библиотека ЦОК https://m.edsoo.ru/ff0a4252
63	Закон сохранения механической энергии	1			Библиотека ЦОК https://m.edsoo.ru/ff0a4360
64	Урок-эксперимент по теме "Экспериментальное определение изменения кинетической и потенциальной энергии при скатывании тела по наклонной плоскости"	1		1	
65	Контрольная работа по теме «Работа и мощность. Энергия»	1	1		
66	Резервный урок. Работа с текстами по теме "Механическое движение"	1			Библиотека ЦОК https://m.edsoo.ru/ff0a4ee6
67	Резервный урок. Работа с текстами по теме "Давление твёрдых тел, жидкостей и газов"	1			Библиотека ЦОК https://m.edsoo.ru/ff0a4ffe
68	Резервный урок. Работа с текстами по теме "Работа. Мощность. Энергия"	1			
ОЕШ	ЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	68	3	12	

8 КЛАСС

		Количество	насов	Электронные	
№ п/п	Тема урока	Всего	Контрольные работы	Практические работы	цифровые образовательные ресурсы
1	Основные положения молекулярно- кинетической теории и их опытные подтверждения	1			Библиотека ЦОК https://m.edsoo.ru/ff0a5256
2	Масса и размер атомов и молекул	1			
3	Модели твёрдого, жидкого и газообразного состояний вещества	1			Библиотека ЦОК https://m.edsoo.ru/ff0a540e
4	Объяснение свойств твёрдого, жидкого и газообразного состояний вещества на основе положений молекулярно-кинетической теории	1			
5	Кристаллические и аморфные тела	1			Библиотека ЦОК https://m.edsoo.ru/ff0a5800
6	Смачивание и капиллярность. Поверхностное натяжение	1			Библиотека ЦОК https://m.edsoo.ru/ff0a5530
7	Тепловое расширение и сжатие	1			Библиотека ЦОК https://m.edsoo.ru/ff0a5a26
8	Температура. Связь температуры со скоростью теплового движения частиц	1			
9	Внутренняя энергия. Способы изменения внутренней энергии	1			Библиотека ЦОК https://m.edsoo.ru/ff0a5c60
10	Виды теплопередачи	1			Библиотека ЦОК https://m.edsoo.ru/ff0a6412

11	Урок-конференция "Практическое использование тепловых свойств веществ и материалов в целях энергосбережения"	1	1 Библиотека ЦОК https://m.edsoo.ru/ff0a65c0
12	Количество теплоты. Удельная теплоемкость	1	Библиотека ЦОК https://m.edsoo.ru/ff0a6976
13	Уравнение теплового баланса. Теплообмен и тепловое равновесие	1	Библиотека ЦОК https://m.edsoo.ru/ff0a7088
14	Лабораторная работа "Исследование явления теплообмена при смешивании холодной и горячей воды"	1	1 Библиотека ЦОК https://m.edsoo.ru/ff0a6a98
15	Расчет количества теплоты, необходимого для нагревания тела и выделяемого им при охлаждении	1	
16	Лабораторная работа "Определение удельной теплоемкости вещества"	1	1 Библиотека ЦОК https://m.edsoo.ru/ff0a6bb0
17	Энергия топлива. Удельная теплота сгорания	1	Библиотека ЦОК https://m.edsoo.ru/ff0a7b5a
18	Плавление и отвердевание кристаллических тел. Удельная теплота плавления	1	Библиотека ЦОК https://m.edsoo.ru/ff0a71d2
19	Лабораторная работа "Определение удельной теплоты плавления льда"	1	1 Библиотека ЦОК https://m.edsoo.ru/ff0a72fe
20	Парообразование и конденсация. Испарение	1	Библиотека ЦОК https://m.edsoo.ru/ff0a740c
21	Кипение. Удельная теплота парообразования и конденсации. Зависимость температуры кипения от атмосферного давления	1	Библиотека ЦОК https://m.edsoo.ru/ff0a786c

22	Влажность воздуха. Лабораторная работа "Определение относительной влажности воздуха"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0a7628
23	Решение задач на определение влажности воздуха	1			
24	Принципы работы тепловых двигателей. Паровая турбина. Двигатель внутреннего сгорания	1			
25	КПД теплового двигателя. Тепловые двигатели и защита окружающей среды	1			Библиотека ЦОК https://m.edsoo.ru/ff0a7c7c
26	Закон сохранения и превращения энергии в тепловых процессах	1			
27	Подготовка к контрольной работе по теме "Тепловые явления. Изменение агрегатных состояний вещества"	1			Библиотека ЦОК https://m.edsoo.ru/ff0a83f2
28	Контрольная работа по теме "Тепловые явления. Изменение агрегатных состояний вещества"	1	1		Библиотека ЦОК https://m.edsoo.ru/ff0a86ae
29	Электризация тел. Два рода электрических зарядов	1			
30	Урок-исследование "Электризация тел индукцией и при соприкосновении"	1		1	
31	Взаимодействие заряженных тел. Закон Кулона	1			Библиотека ЦОК https://m.edsoo.ru/ff0a87e4
32	Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей	1			Библиотека ЦОК https://m.edsoo.ru/ff0a8a0a
33	Носители электрических зарядов.	1			

	Элементарный заряд. Строение атома			
34	Проводники и диэлектрики. Закон сохранения электрического заряда	1		Библиотека ЦОК https://m.edsoo.ru/ff0a8ef6
35	Решение задач на применение свойств электрических зарядов	1		Библиотека ЦОК https://m.edsoo.ru/ff0a90cc
36	Электрический ток, условия его существования. Источники электрического тока	1		Библиотека ЦОК https://m.edsoo.ru/ff0a95a4
37	Действия электрического тока	1		Библиотека ЦОК https://m.edsoo.ru/ff0a96b2
38	Урок-исследование "Действие электрического поля на проводники и диэлектрики"	1	1	
39	Электрический ток в металлах, жидкостях и газах	1		Библиотека ЦОК https://m.edsoo.ru/ff0a9838
40	Электрическая цепь и её составные части	1		
41	Сила тока. Лабораторная работа "Измерение и регулирование силы тока"	1	0.5	Библиотека ЦОК https://m.edsoo.ru/ff0a8bd6
42	Электрическое напряжение. Вольтметр. Лабораторная работа "Измерение и регулирование напряжения"	1	0.5	Библиотека ЦОК https://m.edsoo.ru/ff0a9e14
43	Сопротивление проводника. Удельное сопротивление вещества	1		Библиотека ЦОК https://m.edsoo.ru/ff0aa738
44	Лабораторная работа "Зависимость электрического сопротивления проводника от его длины, площади поперечного сечения и материала"	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0aa738
45	Зависимость силы тока от напряжения.	1		Библиотека ЦОК

	Закон Ома для участка цепи				https://m.edsoo.ru/ff0aa44a
46	Лабораторная работа "Исследование зависимости силы тока, идущего через резистор, от сопротивления резистора и напряжения на резисторе"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0aa04e
47	Последовательное и параллельное соединения проводников	1			
48	Лабораторная работа "Проверка правила сложения напряжений при последовательном соединении двух резисторов"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0aaa58
49	Лабораторная работа "Проверка правила для силы тока при параллельном соединении резисторов"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0aad1e
50	Решение задач на применение закона Ома для различного соединения проводников	1			Библиотека ЦОК https://m.edsoo.ru/ff0aaf8a
51	Работа и мощность электрического тока. Закон Джоуля-Ленца	1			Библиотека ЦОК https://m.edsoo.ru/ff0ab124
52	Лабораторная работа "Определение работы и мощности электрического тока"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0ab3e0
53	Электрические цепи и потребители электрической энергии в быту. Короткое замыкание	1			Библиотека ЦОК https://m.edsoo.ru/ff0ab660
54	Подготовка к контрольной работе по теме "Электрические заряды. Заряженные тела и их взаимодействия. Постоянный электрический ток"	1			Библиотека ЦОК https://m.edsoo.ru/ff0abd2c
55	Контрольная работа по теме	1	1		Библиотека ЦОК

	"Электрические заряды. Заряженные тела и их взаимодействия. Постоянный электрический ток"		https://m.edsoo.ru/ff0abea8
56	Постоянные магниты, их взаимодействие	1	
57	Урок-исследование "Изучение полей постоянных магнитов"	1	1 Библиотека ЦОК https://m.edsoo.ru/ff0ac3d0
58	Магнитное поле. Магнитное поле Земли и его значение для жизни на Земле	1	Библиотека ЦОК https://m.edsoo.ru/ff0ac0ba
59	Опыт Эрстеда. Магнитное поле электрического тока Магнитное поле катушки с током	1	Библиотека ЦОК https://m.edsoo.ru/ff0ac1d2
60	Применение электромагнитов в технике. Лабораторная работа "Изучение действия магнитного поля на проводник с током"	1	0.5 Библиотека ЦОК https://m.edsoo.ru/ff0ac74a
61	Электродвигатель постоянного тока. Использование электродвигателей в технических устройствах и на транспорте. Лабораторная работа "Конструирование и изучение работы электродвигателя"	1	Библиотека ЦОК https://m.edsoo.ru/ff0ac86c
62	Опыты Фарадея. Закон электромагнитной индукции. Правило Ленца	1	
63	Электрогенератор. Способы получения электрической энергии. Электростанции на возобновляемых источниках энергии	1	
64	Подготовка к контрольной работе по теме "Электрические и магнитные явления"	1	
65	Контрольная работа по теме "Электрические и магнитные явления"	1	Библиотека ЦОК https://m.edsoo.ru/ff0acb14

66	Резервный урок. Работа с текстами по теме "Тепловые явления"	1			Библиотека ЦОК https://m.edsoo.ru/ff0acc5e
67	Резервный урок. Работа с текстами по теме "Постоянный электрический ток"	1			Библиотека ЦОК https://m.edsoo.ru/ff0acdc6
68	Резервный урок. Работа с текстами по теме "Магнитные явления"	1			
ОБЩЕ	Е КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	68	2	14.5	

9 КЛАСС

	Тема урока	Количество	часов	Электронные	
№ п/п		Всего	Контрольные работы	Практические работы	цифровые образовательные ресурсы
1	Механическое движение. Материальная точка	1			
2	Система отсчета. Относительность механического движения	1			Библиотека ЦОК https://m.edsoo.ru/ff0ad474
3	Равномерное прямолинейное движение	1			Библиотека ЦОК https://m.edsoo.ru/ff0ad19a
4	Неравномерное прямолинейное движение. Средняя и мгновенная скорость	1			
5	Прямолинейное равноускоренное движение. Ускорение	1			Библиотека ЦОК https://m.edsoo.ru/ff0ad8d4
6	Скорость прямолинейного равноускоренного движения. График скорости	1			
7	Лабораторная работа "Определение ускорения тела при равноускоренном движении по наклонной плоскости"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0adb18
8	Свободное падение тел. Опыты Галилея	1			
9	Равномерное движение по окружности. Период и частота обращения. Линейная и угловая скорости	1			Библиотека ЦОК https://m.edsoo.ru/ff0ae176
10	Центростремительное ускорение	1			
11	Первый закон Ньютона. Вектор силы	1			Библиотека ЦОК

				https://m.edsoo.ru/ff0ae612
12	Второй закон Ньютона. Равнодействующая сила	1		Библиотека ЦОК https://m.edsoo.ru/ff0ae72a
13	Третий закон Ньютона. Суперпозиция сил	1		Библиотека ЦОК https://m.edsoo.ru/ff0ae982
14	Решение задач на применение законов Ньютона	1		Библиотека ЦОК https://m.edsoo.ru/ff0aeb6c
15	Сила упругости. Закон Гука	1		Библиотека ЦОК https://m.edsoo.ru/ff0aeca2
16	Решение задач по теме «Сила упругости»	1		
17	Лабораторная работа «Определение жесткости пружины»	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0aee28
18	Сила трения	1		Библиотека ЦОК https://m.edsoo.ru/ff0af738
19	Решение задач по теме «Сила трения»	1		Библиотека ЦОК https://m.edsoo.ru/ff0afa26
20	Лабораторная работа "Определение коэффициента трения скольжения"	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0af8be
21	Решение задач по теме "Законы Ньютона. Сила упругости. Сила трения"	1		Библиотека ЦОК https://m.edsoo.ru/ff0afb8e
22	Сила тяжести и закон всемирного тяготения. Ускорение свободного падения	1		Библиотека ЦОК https://m.edsoo.ru/ff0af044
23	Урок-конференция "Движение тел вокруг гравитационного центра (Солнечная система). Галактики"	1	1	
24	Решение задач по теме "Сила тяжести и закон всемирного тяготения"	1		Библиотека ЦОК https://m.edsoo.ru/ff0af5f8
25	Первая космическая скорость.	1		Библиотека ЦОК

	Невесомость и перегрузки				https://m.edsoo.ru/ff0af33c
26	Равновесие материальной точки. Абсолютно твёрдое тело. Равновесие твёрдого тела с закреплённой осью вращения	1			Библиотека ЦОК https://m.edsoo.ru/ff0afe36
27	Момент силы. Центр тяжести	1			
28	Решение задач по теме "Момент силы. Центр тяжести"	1			Библиотека ЦОК https://m.edsoo.ru/ff0b02b4
29	Подготовка к контрольной работе по теме "Механическое движение. Взаимодействие тел"	1			Библиотека ЦОК https://m.edsoo.ru/ff0b0408
30	Контрольная работа по теме "Механическое движение. Взаимодействие тел"	1	1		Библиотека ЦОК https://m.edsoo.ru/ff0b06ec
31	Импульс тела. Импульс силы. Закон сохранения импульса. Упругое и неупругое взаимодействие	1			Библиотека ЦОК https://m.edsoo.ru/ff0b07fa
32	Решение задач по теме "Закон сохранения импульса"	1			Библиотека ЦОК https://m.edsoo.ru/ff0b096c
33	Урок-конференция "Реактивное движение в природе и технике"	1		1	
34	Механическая работа и мощность	1			Библиотека ЦОК https://m.edsoo.ru/ff0b0a84
35	Работа силы тяжести, силы упругости и силы трения	1			Библиотека ЦОК https://m.edsoo.ru/ff0b0db8
36	Лабораторная работа «Определение работы силы трения при равномерном движении тела по горизонтальной	1		1	

	поверхности»			
37	Связь энергии и работы. Потенциальная энергия	1		
38	Кинетическая энергия. Теорема о кинетической энергии	1		Библиотека ЦОК https://m.edsoo.ru/ff0b0c32
39	Закон сохранения энергии в механике	1		
40	Лабораторная работа «Изучение закона сохранения энергии»	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0b12fe
41	Колебательное движение и его характеристики	1		Библиотека ЦОК https://m.edsoo.ru/ff0b1858
42	Затухающие колебания. Вынужденные колебания. Резонанс	1		Библиотека ЦОК https://m.edsoo.ru/ff0b20f0
43	Математический и пружинный маятники	1		
44	Урок-исследование «Зависимость периода колебаний от жесткости пружины и массы груза»	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0b197a
45	Превращение энергии при механических колебаниях	1		
46	Лабораторная работа «Определение частоты и периода колебаний пружинного маятника»	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0b1aec
47	Лабораторная работа «Проверка независимости периода колебаний груза, подвешенного к нити, от массы груза»	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0b197a
48	Механические волны. Свойства механических волн. Продольные и поперечные волны	1		Библиотека ЦОК https://m.edsoo.ru/ff0b21fe
49	Урок-конференция "Механические волны	1	1	

	в твёрдом теле. Сейсмические волны"				
50	Звук. Распространение и отражение звука	1			
51	Урок-исследование "Наблюдение зависимости высоты звука от частоты"	1		1	
52	Громкость звука и высота тона. Акустический резонанс	1			
53	Урок-конференция "Ультразвук и инфразвук в природе и технике"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0b23ca
54	Подготовка к контрольной работе по теме "Законы сохранения. Механические колебания и волны"	1			Библиотека ЦОК https://m.edsoo.ru/ff0b25f0
55	Контрольная работа по теме "Законы сохранения. Механические колебания и волны"	1	1		
56	Электромагнитное поле. Электромагнитные волны	1			Библиотека ЦОК https://m.edsoo.ru/ff0b2abe
57	Свойства электромагнитных волн	1			
58	Урок-конференция "Шкала электромагнитных волн. Использование электромагнитных волн для сотовой связи"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0b2fe6
59	Урок-исследование "Изучение свойств электромагнитных волн с помощью мобильного телефона"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0b2c6c
60	Решение задач на определение частоты и длины электромагнитной волны	1			
61	Электромагнитная природа света. Скорость света. Волновые свойства света	1			Библиотека ЦОК https://m.edsoo.ru/ff0b31d0

62	Источники света. Прямолинейное распространение света. Затмения Солнца и Луны	1		Библиотека ЦОК https://m.edsoo.ru/ff0b3658
63	Закон отражения света. Зеркала. Решение задач на применение закона отражения света	1		Библиотека ЦОК https://m.edsoo.ru/ff0b38c4
64	Преломление света. Закон преломления света	1		Библиотека ЦОК https://m.edsoo.ru/ff0b3aea
65	Полное внутреннее отражение света. Использование полного внутреннего отражения в оптических световодах	1		Библиотека ЦОК https://m.edsoo.ru/ff0b3c5c
66	Лабораторная работа "Исследование зависимости угла преломления светового луча от угла падения на границе "воздухстекло""	1	1	
67	Урок-конференция "Использование полного внутреннего отражения: световоды, оптиковолоконная связь"	1	1	
68	Линзы. Оптическая сила линзы	1		Библиотека ЦОК https://m.edsoo.ru/ff0b3f2c
69	Построение изображений в линзах	1		Библиотека ЦОК https://m.edsoo.ru/ff0b444a
70	Лабораторная работа "Определение фокусного расстояния и оптической силы собирающей линзы"	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0b4206
71	Урок-конференция "Оптические линзовые приборы"	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0c0a7e
72	Глаз как оптическая система. Зрение	1		Библиотека ЦОК

				https://m.edsoo.ru/ff0b4684
73	Урок-конференция "Дефекты зрения. Как сохранить зрение"	1	1	
74	Разложение белого света в спектр. Опыты Ньютона. Сложение спектральных цветов. Дисперсия света	1		Библиотека ЦОК https://m.edsoo.ru/ff0c0f4c
75	Лабораторная работа "Опыты по разложению белого света в спектр и восприятию цвета предметов при их наблюдении через цветовые фильтры"	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0c0e2a
76	Урок-практикум "Волновые свойства света: дисперсия, интерференция и дифракция"	1	1	
77	Опыты Резерфорда и планетарная модель атома	1		Библиотека ЦОК https://m.edsoo.ru/ff0c12a8
78	Постулаты Бора. Модель атома Бора	1		
79	Испускание и поглощение света атомом. Кванты. Линейчатые спектры	1		Библиотека ЦОК https://m.edsoo.ru/ff0c144c
80	Урок-практикум "Наблюдение спектров испускания"	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0c1550
81	Радиоактивность и её виды	1		Библиотека ЦОК https://m.edsoo.ru/ff0c1672
82	Строение атомного ядра. Нуклонная модель	1		Библиотека ЦОК https://m.edsoo.ru/ff0c18ac
83	Радиоактивные превращения. Изотопы	1		Библиотека ЦОК https://m.edsoo.ru/ff0c1a14
84	Решение задач по теме: "Радиоактивные превращения"	1		Библиотека ЦОК https://m.edsoo.ru/ff0c1b4a

85	Период полураспада	1			
86	Урок-конференция "Радиоактивные излучения в природе, медицине, технике"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0c2126
87	Ядерные реакции. Законы сохранения зарядового и массового чисел	1			Библиотека ЦОК https://m.edsoo.ru/ff0c1c58
88	Энергия связи атомных ядер. Связь массы и энергии	1			Библиотека ЦОК https://m.edsoo.ru/ff0c1d7a
89	Решение задач по теме "Ядерные реакции"	1			
90	Реакции синтеза и деления ядер. Источники энергии Солнца и звёзд	1			Библиотека ЦОК https://m.edsoo.ru/ff0c1e88
91	Урок-конференция "Ядерная энергетика. Действия радиоактивных излучений на живые организмы"	1		1	
92	Подготовка к контрольной работе по теме "Электромагнитное поле. Электромагнитные волны. Квантовые явления"	1			Библиотека ЦОК https://m.edsoo.ru/ff0c223e
93	Контрольная работа по теме "Электромагнитное поле. Электромагнитные волны. Квантовые явления"	1	1		
94	Повторение, обобщение. Лабораторные работы по курсу "Взаимодействие тел"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0c245a
95	Повторение, обобщение. Решение расчетных и качественных задач по теме "Тепловые процессы"	1			Библиотека ЦОК https://m.edsoo.ru/ff0c2572
96	Повторение, обобщение. Решение расчетных и качественных задач по теме	1			Библиотека ЦОК https://m.edsoo.ru/ff0c2a22

	"КПД тепловых двигателей"				
97	Повторение, обобщение. Решение расчетных и качественных задач по теме "КПД электроустановок"	1			Библиотека ЦОК https://m.edsoo.ru/ff0c2b30
98	Повторение, обобщение. Лабораторные работы по курсу "Световые явления"	1		1	Библиотека ЦОК https://m.edsoo.ru/ff0c2c52
99	Повторение, обобщение. Работа с текстами по теме "Законы сохранения в механике"	1			Библиотека ЦОК https://m.edsoo.ru/ff0c2d6a
100	Повторение, обобщение. Работа с текстами по теме "Колебания и волны"	1			Библиотека ЦОК https://m.edsoo.ru/ff0c2e82
101	Повторение, обобщение. Работа с текстами по теме "Световые явления"	1			Библиотека ЦОК https://m.edsoo.ru/ff0c3044
102	Повторение, обобщение. Работа с текстами по теме "Квантовая и ядерная физика"	1			
ОБЩЕ	ЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	102	3	27	

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

• Физика: 7-й класс: базовый уровень: учебник, 7 класс/ Перышкин И.М.,

Иванов А.И., Акционерное общество «Издательство «Просвещение»

• Физика: 8-й класс: базовый уровень: учебник, 8 класс/ Перышкин И. М.,

Иванов А. И., Акционерное общество «Издательство «Просвещение»

• Физика: 9-й класс: базовый уровень: учебник, 9 класс/ Перышкин И. М.,

Гутник Е. М., Иванов А. И., Петрова М. А., Акционерное общество «Издательство «Просвещение»

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

Физика. 7 класс. Базовый уровень. Методическое пособие. О.А. Черникова,

С.Н. Гладенкова, В.В. Кудрявцев. "Просвещение", 2023

Физика. 8 класс. Базовый уровень. Методическое пособие. О.А. Черникова,

С.Н. Гладенкова, В.В. Кудрявцев. "Просвещение", 2023

Физика. 8 класс. Базовый уровень. Методическое пособие. О.А. Черникова,

С.Н. Гладенкова, В.В. Кудрявцев. "Просвещение", 2023

Физика. 7 класс. Дидактические материалы.

Марон А.Е., Марон Е.А. "Просвещение", 2023.

Физика. 8 класс. Дидактические материалы.

Марон А.Е., Марон Е.А. "Просвещение", 2023.

Физика. 9 класс. Дидактические материалы.

Марон А.Е., Марон Е.А. "Просвещение", 2023.

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ

https://resh.edu.ru/subject/28/7/

https://resh.edu.ru/subject/28/8/

https://resh.edu.ru/subject/28/9/

Контрольные работы для учащихся 7 класса

№1 «Взаимодействие тел»

Цель: проверить усвоение учащимися основных понятий темы: траектория, скорость, масса, плотность, сила.

П-И: знать-обозначение физ. величин, их формулы, единицы измерения, направление силы тяжести, веса тела, силы трения.

Д-К: уметь-применять формулы для решения задач, выражать скорость в м/с и км/ч, сравнивать силу тяжести, вес тела.

Ц-О: самооценка своих знаний.

1 вариант

Базовый уровень

- 1. Выразите в метрах в секунду скорость 36 км/ч.
- 2. Розыскная собака идет по следу преступника. Чью траекторию она повторят?
- 3. Определите массу ведра воды, на которое действует сила 150 Н
- 4. Вследствие резкого торможения пассажиры наклонились. Поясните, в какую сторону и почему?
- 5. Автомобиль движется со скоростью **54** км/ч. Какой путь он пройдет за **20** минут?

Повышенный уровень

- 6. Сколько кирпичей можно погрузить на трехтонный автомобиль, если объем одного кирпича 2 дм^3 , а его плотность 1800 кг/м^3 ?
- 7. Может ли сила трения превышать вес тела? (Ответ объясните).
- 8. Укажите силы, действующие на тело (см. рис.1)

Рис.1

2 вариант

Базовый уровень

- 1. Выразите в километрах в час скорость 10 м/с.
- 2. Какое тело движется прямолинейно: Луна по своей орбите или поезд метро вдоль платформы станции?
- 3. Определите вес ящика с песком, масса которого 75 кг.
- 4. На тело действуют силы 30 H и 70 H, направленные в одну и ту же сторону вдоль одной прямой. Найдите графически равнодействующую этих сил.
- 5. Масса нефти, заливаемой в железнодорожную цистерну, 20 т. какова ёмкость (объем) цистерны, если плотность нефти 800 кг/м³?

Повышенный уровень

- 6. Поезд длиной 240 м, двигаясь равномерно, прошел мост за 2 мин. Какова скорость поезда, если длина моста 360 м?
- 7. Почему санки легче тянуть по снегу, чем по земле? (Ответ объясните).
- 8. Назовите, какие силы, изображены на рисунках. Перерисуйте их в тетрадь и обозначьте каждую силу соответствующей буквой.

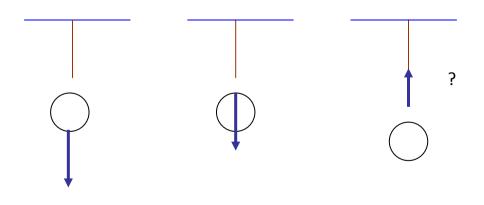


Рис. 1 Рис. 2 Рис. 3

Ключ контрольной работы №1 «Взаимодействие тел»

1 вариант

Базовый уровень

- 1. 36 km/y = (36.1000) : (60.60) = 36000 : 3600 = 10 m/c
- 2. Собака повторяет траекторию преступника.
- 3. Дано: Решение:

F = 150 H F = mg m = 150 H: 10 H/
$$\kappa r \approx 15 \kappa r$$

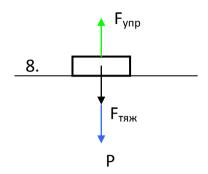
 $g \approx 10 \text{ H/}\kappa r$ m = F: g

Найти m Ответ: m ≈ 15 кг

- 4. Вследствие резкого торможения пассажиры наклонятся вперед по инерции.
- 5. Дано: Решение:

$$\upsilon = 54$$
 км/ч $\begin{vmatrix} 15 \text{ м/c} & \upsilon = S:t & S=15 \text{ м/c} \cdot 1200 \text{ c}=18000 \text{ m}=18 \text{ км} \\ t = 20 \text{ мин} & 1200 \text{ c} & S=\upsilon \cdot t \end{vmatrix}$

Найти S Ответ: S = 18 км


Повышенный уровень

6. Дано: Решение:

$$V_{\kappa} = 2$$
 дм 3 $0,002$ м 3 $m_a = N \cdot m_{\kappa}$ $m_{\kappa} = 0,002$ м $^3 \cdot 1800$ кг/м $^3 = 3,6$ кг $m_a = 3$ т $m_a = 3$ т

Ответ: на автомобиль можно погрузить 833 кирпича.

7. Да, когда нет опоры или подвеса.

2 вариант

Базовый уровень

- 1. $10 \text{ m/c} = 10 \text{ m} \cdot 3600 \text{ c} = 36000 \text{ m/u} = 36000 : 1000 = 36 \text{ km/u}$
- 2. Равномерно движется Луна по своей орбите.
- 3. Дано: Решение:

$$m = 75 \text{ кг}$$
 $P = mg$ $P = 75 \text{ кг} \cdot 10 \text{ H/ кг} \approx 750 \text{ H}$ $g \approx 10 \text{ H/кг}$

Найти Р. Ответ: Р ≈ 750 Н.

4. Дано: Решение:

$$F_1 = 30 \text{ H}$$
 $R = F_1 + F_2$ $R = 30 \text{ H} + 70 \text{ H} = 100 \text{ H}$ $F_2 = 70 \text{ H}$

5. Дано: Решение:

Найти V.

Ответ: $V = 25 \text{ м}^3$

Повышенный уровень

6. Дано: Решение:

$$S_n = 240 \text{ M}$$
 $V = S:t$ $S = 240 \text{ M} + 360 \text{ M} = 600 \text{ M}$ $V = S:t$ $V = S:t$ $V = 600 \text{ M} = 600 \text{ M}$ $V = S:t$ $V = 600 \text{ M} = 600 \text{ M}$ $V = 600 \text{ M} = 600 \text{ M}$ $V = 600 \text{ M} = 600 \text{ M}$ $V = 600 \text{ M} = 600 \text{ M}$ $V = 600 \text{ M} = 600 \text{ M}$

Найти S. Ответ: $\upsilon = 5 \text{ м/c}$

7. Санки легче тянуть по снегу, чем по земле т.к. меньше сила трения.

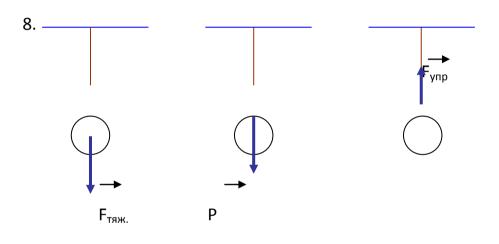
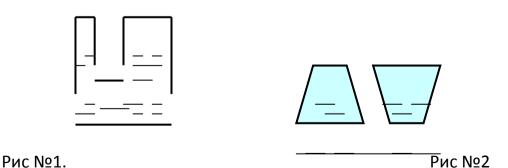


Рис. 1 Рис. 2 Рис. 3

№2 «Давление твердых, жидких и газообразных тел»

Цель: выявить знания учащихся по теме.


П-И: обозначение, формулы вычисления давления твердых и жидких тел, значение нормального атмосферного давления, единицы измерения давления Д-К: уметь-применять формулы для решения задач, выражать значения давления в Паскалях (Па), кПА, мм. рт. ст.

Ц-О: личная ответственность за свои действия.

1 вариант

Базовый уровень

- 1. Зачем нужно затачивать режущие и колющие инструменты? (Ответ объясните).
- 2. Сила 600 Н равномерно действует на площадь 0,2 м². Определите давление в этом случае.
- 3. Какое давление оказывает на дно сосуда слой бензина высотой 5 м? Плотность бензина 710 кг/м³.
- 4. Масса воды в широком сосуде 200 г, а в узком 100 г. Почему вода не переливается из широкого сосуда в узкий? (рис.1)
- 5. Медицинские банки перед тем, как поставить больному, прогревают пламенем. Объясните, почему после этого они «присасываются» к больному?

Повышенный уровень

- 6. На какой глубине давление в реке равно 200 кПа?
- 7. Определите, с какой силой воздух давит на крышу дома размером **20** ^х **50** м при нормальном атмосферном давлении?
- 8. Два сосуда имеют одинаковые объемы, но различные площади дна. Что можно сказать а) о массах воды в сосудах, б) о давлении на дно сосудов, в) о силе давления на дно сосудов? (рис №2) (Ответ объясните).

2 вариант

Базовый уровень

- 1. Почему у трактора делают широкие гусеницы?
- 2. Вычислите давление жидкости плотностью **1800** кг/м³ на дно сосуда, если высота ее уровня **10** см.
- 3. Выразите в килопаскалях давление 380 мм.рт.ст.
- 4. Трактор весом **112** кН оказывает давление на грунт **50** кПа. Определите площадь соприкосновения гусениц трактора с грунтом.
- 5. Кузов машины заполнили грузом. Изменилось ли давление в камерах колес автомашины? Почему?

Повышенный уровень

- 6. Какая глубина в море соответствует давлению воды, равному 412 кПа?
- 7. Принимая длину одной лыжи равной **1,8** м, а ширину **10** см, определите давление, которое оказывает на снег мальчик массой **54** кг.
- 8. В маленьком бассейне плавает лодка, частично заполненная водой. Изменится ли уровень воды в бассейне, если вычерпать воду из лодки в бассейн?

Ключ контрольной работы №2 «Давление твердых, жидких и газообразных тел»

1 вариант

Базовый уровень

- 1. Режущие и колющиеся инструменты затачивают для того, чтобы они лучше резали. Этим уменьшают площадь опоры, значит, давление будет больше.
- 2. Дано: Решение:

F = 600 H p = F:S | p = 600 H: 0,2
$$M^2$$
 = 3000 H/ M^2 = 3000 Πa = 3 κΠa $S = 0,2 M^2$

$$p - ?$$
 Ответ: $p = 3 к \Pi a$

3. Дано: Решение:

h = 5 м

$$\rho$$
 = 710 кг/ ρ p = 5 м · 710 кг/ ρ · 10 H/кг = 35500 Па = 35,5 кПа
 ρ = 710 Кг/ ρ p = 10 H/кг

$$p - ?$$
 Ответ: $p = 35,5 \text{ к}\Pi a$

- 4. По закону Паскаля давление жидкости на дно и стенки сосуда везде одинаковое, поэтому вода не переливается из широкого сосуда в узкий.
- 5. При нагревании тела (воздух) расширяется, а при охлаждении сжимаются. Значит, давление в медицинской банке при нагревании меняется.

Повышенный уровень

6. Дано: Решение:
$$p = 200 \ \kappa \Pi a \qquad 200000 \ \Pi a \qquad p = h \ \rho \ g \qquad h = 2000000 \ м; \ (1000 \ \kappa r/ \ m^3 \cdot 10 \ H/\kappa r) = 20 \ \Pi a$$

$$\rho = 1000 \ \kappa r/m^3 \qquad h = p; \ \rho \ g$$

$$g = 10 \ H/\kappa r$$

$$h - ?$$
 Ответ: $h = 20 \Pi a$

7. Дано: Решение:
$$S = 20 \text{ м} \cdot 50 \text{ м} \qquad 1000 \text{ м}^2 \qquad p = F \text{: S} \qquad F = 101300 \text{ Па} \cdot 1000 \text{ м}^2 = 101300000 \text{ H}$$

$$p = 760 \text{ мм.рт.ст.} \qquad 101300 \text{ Па} \qquad F = p \cdot \text{S} \qquad \text{Ответ: F} = 101300 \text{ кПа}$$

8. а) масса воды одинаковая, т.к. объемы сосудов равны, б) давление разное, т.к. площади опоры различны, в) сила давления тоже будет различна.

2 вариант

Базовый уровень

- 1.У трактора делают широкие гусеницы для того, чтобы уменьшить давление на дорогу, т.к. при увеличении площади опоры, давление уменьшается.
- 2. Дано: Решение:

p-? Ответ: p=1,8 к Πa

3. Дано: Решение:

р = 380 мм.рт.ст.

$$p = 380 \cdot 133,3 = 50654 \ \Pi a$$

 $1 \text{ мм.рт.ст.} = 133,3 \ \Pi a$
 $p = 7 \cdot (\Pi a)$
 $p = 380 \cdot 133,3 = 50654 \ \Pi a$
 $p = 50654 \ \Pi a$

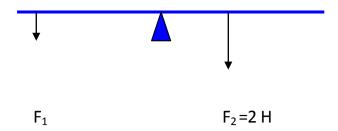
4. Дано: Решение:

5. При заполнении кузова машины грузом, давление в камерах колес изменилось, т.к сила тяжести увеличилась.

Повышенный уровень.

8. Если из лодки вычерпать некоторую массу воды, она будет вытеснять именно на столько меньше воды в бассейне. Поскольку вода из лодки попадает в тот же бассейн, уровень воды в нем не изменится. Это и понятно: ведь общий вес содержимого бассейна не изменится. Следовательно не изменится и сила давления воды на дно, зависящая от уровня воды.

№ 3 «Работа. Мощность. Энергия»

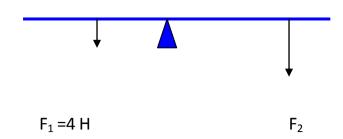

1 вариант

Базвый уровень

- 1. Перечислите известные вам простые механизмы. Приведите примеры их применения.
- 2. Сформулируйте правило равновесия рычага.
- 3. Какую работу надо совершить для того, чтобы поднять груз весом 2 Н на высоту 5 метров?
- 4. Двигатель комнатного вентилятора за 60 с совершил работу 120 Дж. Чему равна мощность двигателя?
- 5. Какие из перечисленных тел обладают потенциальной энергией:
- а) мяч, лежащий на полу; б) сжатая пружина; в) движущийся автомобиль?

Повышенный уровень

- 6.Двигатель комнатного вентилятора за 10 минут совершил работу 21 кДж. Чему равна мощность двигателя?
- 7. Башенный кран поднимает в горизонтальном положении стальную балку длиной 5 м и площадью 100 см² на высоту 12 м. Какую работу совершил кран? Плотность стали равна 7800 кг/м³
- 8. Какую силу F_1 надо приложить к рычагу в точке B, чтобы рычаг остался в равновесии?
 - B 6 cm 3 cm A


2 вариант

Базовый уровень

- 1. Сформулируйте «золотое правило» механики
- 2 Может ли быть совершена механическая работа при отсутствии перемещения?
- 3. Буксирный катер тянет баржу с одного причала на другой, действуя с силой 5000 Н. Расстояние между причалами 1км. Определите работу, совершаемую катером.
- 4. Штангист, поднимая штангу, совершает работу 5 кДж за 2 секунды. Вычислите мощность штангиста.
- 5. Какие из перечисленных тел обладают кинетической энергией:
- а) мяч, лежащий на полу; б) сжатая пружина; в) движущийся автомобиль?

Повышенный уровень

- 6. Подьемный кран поднимает бетонную плиту массой 5 т на высоту 9 м в течение 1 мин. Какую мощность он при этом совершает?
- 7. Человек при ходьбе в течение 2 ч делает 10 000 шагов (за один шаг совершается работа 40 Дж). Вычислите мощность.
- 8. Какую силу F_2 надо приложить к рычагу в точке A чтобы рычаг остался в равновесии?
 - B 3 cm 6 cm A

Ключ контрольной работы № 3 «Работа. Мощность. Энергия»

1 вариант Базвый уровень

- 1. Простые механизмы: блок, наклонная плоскость, рычаг.
- 2. Правило равновесия рычага: *рычаг находится в равновесии, когда силы,* действующие на него, обратно пропорциональны плечам этих сил.
- 3.Дано: Решение:

А-? Ответ: А=10 Дж

4. Дано: Решение:

5. Потенциальной энергией обладает сжатая пружина.

Повышенный уровень.

6. Дано: СИ Решение:

$$t = 10$$
 мин $\begin{vmatrix} 600 \text{ c} \\ A = 21 \text{ кДж} \end{vmatrix}$ $N = A : t$ $N = 21000 \text{ Дж} : 600 \text{ c} = 35 \text{ BT}$

N -? OTBET: N = 35 BT

7. Дано: СИ Решение:

$$I = 5 \text{ M}$$
 $A = F \cdot h$ $V = 5 \text{ M} \cdot 0.01 \text{ M}^2 = 0.05 \text{ M}^3$ $V = 5 \text{ M} \cdot 0.01 \text{ M}^2 = 0.05 \text{ M}^3$ $V = 5 \text{ M} \cdot 0.01 \text{ M}^2 = 0.05 \text{ M}^3$ $V = 5 \text{ M} \cdot 0.01 \text{ M}^2 = 0.05 \text{ M}^3$

8. Дано: СИ Решение:

$$I_1 = 3 \text{ cm}$$
 | 0,03 m | $F_1 \cdot I_1 = F_2 \cdot I_2$ | $F_1 = (2 \text{H} \cdot 0,03 \text{ m}) : 0,06 \text{ m} = 1 \text{ H}$
 $I_2 = 6 \text{ cm}$ | 0,06 m | $F_1 = F_2 \cdot I_2 : I_1$ | $F_2 = 2 \text{ H}$

 F_1 -? OTBET: F_1 = 1 H

2 вариант Базовый уровень

- 1. «Золотое правило» механики во сколько раз выигриваем в силе, во столько раз проигрываем в расстоянии.
- 2. Механическая работа при отсутствии перемещения не может быть совершена. Согласно формуле A= F'S, если S=0, то и A=0.

 4. Дано:
 Решение:

 t = 2 с
 N = A : t
 N = 5000 Дж : 2 с = 2500 Вт

 A = 5 кДж
 \$000 Дж

 N -?
 Ответ: N = 2500 Вт

5. Кинетической энергией обладает движущийся автомобиль.

Повышенный уровень

7. Дано: СИ Решение:
$$t = 2 \text{ ч} \qquad 7200 \text{ c} \quad | \text{N} = \text{A: t} \qquad \text{A} = 40 \text{ Дж} \cdot 10 000 = 400 000 \text{Дж}$$

$$\text{N} = 10000 \qquad \qquad \text{A} = \text{A}_1 \cdot \text{N} \quad \text{N} = 400000 \text{ H} \cdot 7200 \text{ c} = 55, 5 \text{ BT}$$

$$\text{A}_1 = 40 \text{ Дж}$$

N -? Ответ: 55,5 Вт

8. Дано: СИ Решение:

$$I_1 = 3 \text{ cm} \mid 0.03 \text{ m} \mid F_1 \cdot I_1 = F_2 \cdot I_2$$
 $F_1 = (4 \text{H} \cdot 0.03 \text{ m}) : 0.06 \text{ m} = 2 \text{ H}$
 $I_2 = 6 \text{ cm} \mid 0.06 \text{ m} \mid F_2 = F_1 \cdot I_1 \cdot I_2$
 $F_1 = 4 \text{H}$

 F_{2} - ? OTBET: F_{1} = 2 H

Контрольные работы для учащихся 8 класс

№1 «Тепловые явления»

Цель: проверить усвоение знаний учащимися по теме.

П -и: знание основных понятий: количество теплоты, удельная теплоемкость, теплота плавления, парообразования сгорания; их обозначение, формулы для нахождения, единицы измерения.

Д -к: уметь применять формулы для решения задач, пользоваться таблицами для нахождения нужных величин. Уметь выражать единицы измерения физических величин в систему СИ.

Ц -о: умение быть учеником, организация учебной деятельности.

1 вариант

Задания 1-5 для всех уровней:

- 1. Каким способом теплопередачи осуществляется передача энергии от Солнца к Земле?
 - А) теплопроводностью,
 - Б) излучением,
 - В) конвекцией,
 - Г) всеми видами перечисленными в А, Б, В.
- 2. Какая физическая величина определяет количество теплоты, необходимое для нагревания вещества массой 1 кг на 1°С?
 - А) удельная теплоемкость.
 - Б) удельная теплота плавления,
 - В) удельная теплота сгорания,
 - Г) среди ответов нет правильного
- 3. При каком процессе количество теплоты вычисляется по формуле Q = mg?

- А) при нагревании,
- Б) при плавлении,
- В) при превращении жидкости в пар,
- Г) среди ответов нет правильного.
- 4. Объясните, зачем нужны двойные стекла в окнах?
- 5. Какой формулой надо воспользоваться, для расчета количества теплоты при кристаллизации (отвердевании)?

Базовый уровень

- 6. Какое количество теплоты необходимо для нагревания 200 г алюминия от 20 °C до 30 °C? Удельная теплоемкость алюминия 920Дж/кг °C?
- 7. Какое количество теплоты необходимо затратить, чтобы расплавить 10 кг свинца взятого при температуре плавления? Удельная теплота плавления свинца составляет 2,5 10^4 Дж/кг.

Повышенный уровень

- 8. Сколько надо сжечь каменного угля, чтобы расплавить 500 г льда, взятого при температуре 20 °C? Воспользоваться таблицей.
- 9. Сколько надо сжечь спирта, чтобы 200 г железа взятого при температуре 39 °C довести до кипения? Воспользоваться таблицей.

2 вариант

Задания 1-5 для всех уровней:

- 1. Каким способом теплопередачи осуществляется нагрев квартиры зимой?
 - А) теплопроводностью,

- Б) излучением,
- В) конвекцией,
- Г) всеми видами перечисленными в А, Б, В.
- 2. Какая физическая величина определяет количество теплоты, необходимое для охлаждения вещества массой 1 кг на 1°С?
 - А) удельная теплоемкость,
 - Б) удельная теплота плавления,
 - В) удельная теплота сгорания,
 - Г) среди ответов нет правильного
- 3. При каком процессе количество теплоты вычисляется по формуле: Q=mL?
 - А) при нагревании,
 - Б) при плавлении,
 - В) при превращении жидкости в пар,
 - Г) среди ответов нет правильного.
- 4. Объясните, почему выражение «шуба греет» не верно?
- 5. Какой формулой надо воспользоваться, для расчета количества теплоты выделившегося при конденсации?

Базовый уровень

6. Какое количество теплоты необходимо для остывания 200 г алюминия от 80 °C до 20 °C? Удельная теплоемкость алюминия 920 Дж/кг °C?

7 .Какое количество теплоты необходимо для обращения в пар 5 кг воды, взятой при температуре кипения. Удельная теплота парообразования воды составляет $2,3^{\circ}10^{6}$ Дж/кг.

Повышенный уровень

- 8. Сколько надо сжечь древесного угля, чтобы расплавить 500 г льда, взятого при температуре -20 С? Воспользоваться таблицей.
- 9. Сколько надо сжечь бурого угля, чтобы 200 г меди взятой при температуре 85°C до кипения? Воспользоваться таблицей.

Nº	Вещество	Плотно сть кг/м ³	Уд. теплоем кость Дж/кг°С	Уд. теплота плавлен ия Дж/кг	Уд. теплота парообр азов. Дж/кг	Темпера тура плавлен ия °С	Темпера тура кипения; °С	Виды топлива	Уд. теплота сгорани я .Дж/кг
1	Алюминий	2700	920	3,9 ⁻ 10 ⁵	9,2 [·] 10 ⁶	660	2467	Порох	3,8 [·] 10 ⁶
2	Вода	1000	4200	см.лед	2,3 [.] 10 ⁶	0	100	Дрова сухие	13 ·10 ⁶
3	Железо	7800	460	2,7 ⁻ 10 ⁵	6,3 ⁻ 10 ⁶	1539	2750	Торф	14 '10 ⁶
4	Лед	900	2100	3,4 ·10 ⁵	вода	0	вода	Камен. уголь	30 ·10 ⁶
5	Медь	8900	400	2,1 ·10 ⁵	4,8 ⁻ 10 ⁶	1085	2567	Спирт	27 ·10 ⁶
6	Ртуть	13600	140	0,12 ⁻ 10 ⁵	0,3 ⁻ 10 ⁶	-39	357	Древесн.уголь	34 ·10 ⁶
7	Свинец	11300	140	0,25 ·10 ⁵	0,8 ·10 ⁶	327	1740	Бурый уголь	17 ·10 ⁶
8	Спирт	800	2500	1,1 ·10 ⁵	0,9 ·10 ⁶	-114	78	Бензин	46 ·10 ⁶

Ключ к контрольной работе №1 «Тепловые явления»

I вариант

- 1. Б) излучением.
- 2. А) удельная теплоемкость.
- 3. Г) среди ответов нет правильного (при сгорании топлива)
- 4. Двойные стекла в окнах нужны для того, чтобы сохранить тепло в квартире, т.к. между стеклами рам находится воздух, а он плохой проводник тепла.
- 5. Q = m λ количество теплоты, выделяющееся при кристаллизации (отвердевании) –где λ удельная теплота плавления

«3» 6. Дано:

СИ

Решение:

<u>C= 920 Дж/кг ^{.0}С</u>

Q-? Ответ: Q=1840 Дж

7. Дано: Решение:

$$m = 10 \ kr$$
 $Q = m \lambda$ $Q = 10 \cdot 2,5 \cdot 10^{.4}$ $\lambda = 2,5 \cdot 10^{.4} \ Дж/kr = Дж$ $= 25 \cdot 10^{.4} \ Дж = 250000 \ Дж$

Ответ: Q = 250 кДж

«4» 8. Дано: СИ Решение:

Ответ: $m_2 = 6,3$ г

«5» 9. Дано: Решение:
$$m_1 = 200 \Gamma = 0, 2 \text{ кг} \qquad Q_1 = C \ m_1 \ (t_2 - t_1) \qquad Q_1 = 460 \cdot 0, 2 \cdot (1539 - 39) = 138000 \ Дж$$

$$t_1 = 39 \, ^0 \text{C} \qquad Q_2 = \lambda \ m \qquad Q_2 = 2, 7 \cdot 10^5 \ 0, 2 = 0, 54 \cdot 10^5 = 54000 \ Дж$$

$$t_2 = 1539 \, ^0 \text{C} \qquad Q_3 = C \ m_1 \ (t_3 - t_2) \qquad Q_3 = 460 \cdot 0, 2 \cdot (2750 - 1539) = 111412 \ Дж$$

$$t_3 = 2750 \, ^0 \text{C} \qquad Q = Q_1 + Q_2 + Q_3 \qquad Q = 138000 + 54000 + 111412 = 303412 \ Дж$$

$$C = 460 \ Дж/к \Gamma \cdot ^0 \text{C} \qquad m_2 = Q : \qquad q \qquad m_2 = 303412 : 27 \cdot 10^{.6} =$$

$$q = 27 \cdot 10^{.6} \ Дж/к \Gamma \qquad [m_2] = \ Дж: \ Дж/к \Gamma = 0,011 \ \text{K} \Gamma = 11 \Gamma$$

$$\lambda = 2,7 \cdot 10^5 \ Дж/к \Gamma \qquad = \text{ K} \Gamma$$

$$Other: m_2 = 11 \ \Gamma$$

II вариант

- 1. А) теплопроводностью
- 2. А) удельная теплоемкость
- 3. В) при превращении жидкости в пар

- 4. Шуба защищает человека от холода, т. к. между волокнами меха содержится воздух, а он обладает плохой теплопроводностью.
- 5.Q = m L количество теплоты, выделяющееся при конденсации:

где L- удельная теплота парообразования.

Решение:

$$m$$
 =200 r =0,2 кг $Q = C m (t_2 - t_1)$ $Q = 920 \cdot 0,2 \cdot (20-80)$ $t_1 = 80^{\circ}C$ $Q = 20^{\circ}C$ $= -11040$ Дж= -11,04 кДж $= -11040$ Дж= -11,04 кДж $= -11040$ $=$

Ответ: Q = -11040 Дж

Ответ: Q =11500 кДж

87

«4» 8. Дано: Решение:
$$m_1 = 500 r = 0,5 \ \text{кr} \qquad Q_1 = C \ m_1 \ (t_2 - t_1) \qquad Q_1 = 2100 \cdot 0,5 \cdot (0 - (-20))$$

$$t_1 = -20^0 C \qquad Q_2 = \lambda \ m \qquad = 21000 \ \text{Дж} = 21 \ \text{кДж}$$

$$t_2 = 0^{0}\text{C}$$
 Q = Q₁ + Q₁ Q₂ = 0,5°3,4°10⁵ = 1,7°10⁵ Дж
C=2100 Дж/кг $^{.0}\text{C}$ m₂= Q: q Q=21000 + 170000 = 191000 Дж
q=34°10 $^{.6}$ Дж/кг [m₂] = Дж:Дж/кг = m₂=191000: 34°10 $^{.6}$ =191000:34000000
 λ =3,4°10 $^{.5}$ Дж/кг = кг = 0,0056кг = 5,6 г

Ответ: $m_2 = 5,6$ г

«5» 9. Дано: Решение:
$$m_1 = 200r = 0,2 \ \text{кг} \qquad Q_1 = C \ m_1 \ (t_2 - t_1) \qquad Q_1 = 400 \cdot 0,2 \cdot (1085 - 85) = 80000 \ \text{Дж}$$

$$t_1 = 85^{\circ} \text{C} \qquad Q_2 = \lambda \ \text{m} \qquad Q_2 = 2,1 \cdot 10^5 \cdot 0,2 = 0,42 \cdot 10^5 = 42000 \ \text{Дж}$$

$$t_2 = 1085^{\circ} \text{C} \qquad Q_3 = C \ m_1 \ (t_3 - t_2) \qquad Q_3 = 400 \cdot 0,2 \cdot (2567 - 1085) = 118560 \ \text{Дж}$$

$$t_3 = 2567^{\circ} \text{C} \qquad Q = Q_1 + Q_2 + Q_3 \qquad Q = 80000 + 42000 + 118560 = 240560 \ \text{Дж}$$

$$C = 400 \ \text{Дж/кг} \quad \text{M}_2 = Q : \ \text{Q} \qquad m_2 = 240560 : 17 \cdot 10^{-6} = 168560 : 17000000$$

$$q = 17 \cdot 10^{-6} \ \text{Дж/кг} \qquad [m_2] = \ \text{Дж:} \ \text{Дж/кг} = \qquad 0,014 \ \text{кr} = 14 \ \text{г}$$

$$\lambda = 2,1 \cdot 10^5 \ \text{Дж/кг} \qquad = \ \text{кr}$$

 m_2 -?

Ответ: $m_2 = 14 г$

№2 «Электрические явления»

1 вариант

Базовый уровень

- 1. Какой электрический заряд имеет ядро атома?
- 2. Каким прибором пользуются для измерения силы тока? Как он изображается на схеме?
- 3. Используя схему электрической цепи, изображенной на рис1, определите общее сопротивление, если $R_1 = 2$ Oм, $R_2 = 3$ Oм, $R_3 = 6$ Oм, $R_4 = 5$ Oм.

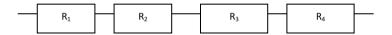


Рис. 1.

- 4. Какой ток течет через вольтметр, если его сопротивление 12 кОм и он показывает напряжение 120 В?
- 5. Электрическая печь, сделанная из никелиновой проволоки, (удельное сопротивление 0,4 Ом мм²/м) длиной 56,25 м и площадью сечения 1,5 мм², присоединена к сети с напряжением 120 В. Определите силу тока, протекающего по спирали.

Повышенный уровень

- 6. Определите общее сопротивление цепи при последовательном соединении проводников, если напряжение равно 3 B, I_1 = 1 A, I_2 = 10 A.
- **7.** Используя схему рис. 2, определите общее напряжение в цепи, если амперметр показывает 5 A, R_1 = 2 Oм, R_2 = 3 Oм, R_3 = 6 Oм,

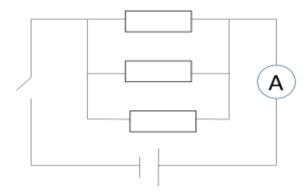


Рис. 2

8. Сила тока в цепи составляет 2 А. Что это означает?

2 вариант

Базовый уровень

- 1. Какого знака заряд имеет электрон?
- 2. Какое напряжение надо создать на концах проводника сопротивлением 50 Ом, чтобы в нем возникла сила тока 2 А?
- 3. Используя схему цепи, изображенной на рис 3 определите общее напряжение, если $U_1 = 2$ B, $U_2 = 2$ B, $U_3 = 2$ B, $U_4 = 2$ B.

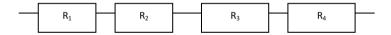


Рис. 3

- 4. Каким прибором измеряют напряжение, как этот прибор изображается на схемах?
- 5. Через алюминиевый проводник длиной 0,7 м и площадью поперечного сечения 0,75 мм² протекает ток силой 5 А. Каково напряжение на концах этого проводника? Удельное сопротивление алюминия равно 0,028 Ом мм²/м

Повышенный уровень

6. Определите общее напряжение при последовательном соединении проводников, если сила тока равна 3A, R_1 = 1 Ом, R_2 = 10 Ом.

7.Участок цепи состоит из трех проводников (рис.4) R_1 =20 Ом, R_2 =10 Ом, R_3 =5 Ом. Определите напряжение цепи, если амперметр показывает силу тока 2A.

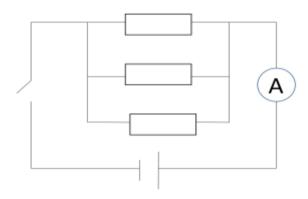
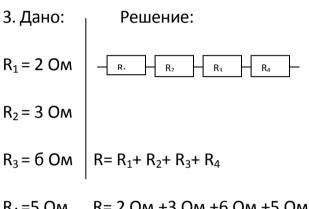


Рис. 4


8. Зависит ли величина сопротивления проводника от напряжения на его концах?

Ключ контрольной работы №2 **«Электрические явления»**

1 вариант

Базовый уровень

- 1. Ядро атома заряжено положительно
- 2.Для измерения силы тока используют *амперметр*: в цепь включают последовательно.

R₄ = 5 Om R= 2 Om +3 Om +6 Om +5 Om =16 Om

R-? Ответ: R = 16 Ом

4. Дано: СИ Решение: R = 12 кОм 12000 Ом I = U:R I ⊨ 120 B : 12000 €

I-? Otbet: I = 0,01 A

5. Дано: Решение:

$$\rho = 0.40 \text{ m m}^2/\text{m}$$
 | I = U:R | R= 0.40 m mm²/m · 56.25 m :1.5 mm² =15 0m
 $I = 56.25 \text{ m}$ | R= $\rho \cdot I/\text{s}$ | I = 120 B:15 0m =8 A
 $S = 1.5 \text{ mm}^2$ | U = 120 B

I-? Ответ: I = 8 A

Повышенный уровень

6. Дано: Решение:

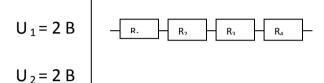
$$I_1=1 \text{ A}$$
 $I=U:R$ $I=1 \text{ A}+10 \text{ A}=11 \text{ A}$ $I_2=10 \text{ A}$ $R=U:I$ $R=3 \text{ B}:11 \text{ A}=0,27 \text{ Om}$ $R=7$

Ответ: R = 0,27 Ом

$$I = 5 \text{ A}$$
 $I = U : R$ $1/R = 1/2 \text{ Om} + 1/3 \text{ Om} + 1/6 \text{ Om} = 6/6 \text{ Om}$ $R_1 = 2 \text{ Om}$ $U = R I$ $R = 1 \text{ Om}$ $R_2 = 3 \text{ Om}$ $1/R = 1/R_1 +$ $U = 1 \text{ Om} \cdot 5 \text{ A} = 5 \text{ B}$ $R_3 = 6 \text{ Om}$ $+ 1/R_2 + 1/R_3$ $U = 7$ OTBET: $U = 5 \text{ B}$

8. Сила тока в цепи составляет 2 А. Это означает что за одну секунду через поперечное сечение проводника проходит электрический заряд равный 2 Кл

2 вариант


Базовый уровень

- 1. Электрон имеет *отрицательный* заряд.
- 2. Дано: Решение:

$$R = 50 \text{ Om } | = U:R$$
 $\psi = 50 \text{ Om } : 2 \text{ A} = 100 \text{ B}$
 $| = 2 \text{ A}$ $| = R \text{ I}$

Ответ: U = 100 B

3. Дано: Решение:

$$U_3 = 2 B$$
 $U = U_1 + U_2 + U_3 + U_4$

$$U_4 = 2 B$$
 $U = 2 B + 2 B + 2 B + 2 B = 8B$

Ответ: U = 8 В

- 4. Для измерения напряжение используют *вольтметр*: в цепь включают параллельно.
- 5. Дано: Решение:

$$\rho = 0.028 \text{ Om } \text{mm}^2/\text{m}$$
 $I = U: R$ $R = 0.028 \text{ Om } \text{mm}^2/\text{m} \cdot 0.7 \text{ m} \cdot 0.75 \text{ mm}^2 = 0.026 \text{ Om}$ $I = 0.7 \text{ m}$ $V = R I$ $V = 0.026 \text{ Om} \cdot 5 \text{ A} = 0.13 \text{ B}$ $V = 0.75 \text{ mm}^2$ $V = 0.026 \text{ Om} \cdot 5 \text{ A} = 0.13 \text{ B}$

U -?

Ответ: U = 0,13 B

Повышенный уровень

6. Дано: Решение:

$$R_1 = 1 \text{ Om}$$
 $I = U:R$ $R = 1 \text{ Om} + 10 \text{ Om} = 11 \text{ Om}$

$$R_2 = 10 \text{ Om.}$$
 $U = R^{\circ} I$ $U = 11 \text{ Om} \cdot 3 \text{ A} = 33 \text{ B}$ $U = 3 \text{ A}$ $R = R_1 + R_2$ $U = 33 \text{ B}$ $U = 33 \text{ B}$

7. Дано: Решение:

$$I = 2 \text{ A}$$
 $I = U:R$ $1/R = 1/20 \text{ Om} + 1/10 \text{ Om} + 1/5 \text{ Om} = 0,35 \text{ Om}$
 $R_1 = 20 \text{ Om}$ $U = R I$ $R = 1:0,35 = 2,86 \text{ Om}$
 $R_2 = 10 \text{ Om}$ $1/R = 1/R_1 +$ $U = 2,86 \text{ Om} \cdot 2 \text{ A} = 63 \text{ B}$
 $R_3 = 5 \text{ Om} + 1/R_2 + 1/R_3$
 $U = 7$ OTBET: $U = 63 \text{ B}$

8. Величина сопротивления проводника не зависит от напряжения на его концах, она постоянна.

№3 «Электромагнитные явления»

1 вариант

Заполните кроссворд

- 1. Датский ученый
- 2. Существует у магнитной стрелки
- 3. Планета, у которой нет магнитного поля
- 4. Он изобрел электродвигатель
- 5. Поле вокруг движущихся зарядов
- 6. Связана с солнечной активностью
- 7. Курская магнитная ...
- 8. Коэффициент полезного действия
- 9. Полюс Земли
- 10. Полюс Земли
- 11. «Производитель» электричества
- 12. Тело способное притягивать к себе железо
- 13. Прибор, основной частью которого является электромагнит
- 14. Усиливает магнитное поле катушки
- 15. Катушка с сердечником внутри
- 16. Часть двигателя

				1 -		<u> </u>		1
				1. э				
		1	1					
		2		Л				
	3			е				
			4	К				
5				Т				
				•				
	l	6		n		j		
		U		р				
		_				ı	1	1
		7		0				

	8		Д					
	9		В					
10			И					
			11. г					
		1 2	а					
			13. т					
		1 4	е					
	15		Л				1	<u>I</u>
16			Ь	ı	I	J		

2 вариант

- 1. Он впервые обнаружил взаимодействие проводника с током
- 2. Железная руда
- 3. Чем больше сила тока, тем действие электромагнита ...
- 4. Основная часть электродвигателя
- 5. Хорошо притягивается магнитом
- 6. Очищает зерно от сорняков
- 7. Линия, соединяющая полюсы магнитной стрелки
- 8. Прибор
- 9. Они вызывают магнитную бурю
- 10. Электро-...
- 11. Полюса, которые между собой притягиваются
- 12. С их помощью можно обнаружить магнитное поле
- 13. Тело, длительное время, сохраняющее намагниченность

	1. э			
2	Л			

3					е						
				4	К						
				5	Т						
	6				р						
					7. o				_		
			8		M						
				9	a						
		10			Г						
		11			Н						
			12		И						
13					Т	•	•	•			

Ключ контрольной работы №3 «Электромагнитные явления»

1 вариант

- 1. Датский ученый (Эрстед)
- 2. Существует у магнитной стрелки (полюс)
- 3. Планета, у которой нет магнитного поля (Венера)
- 4. Он изобрел электродвигатель (Якоби)
- 5. Поле вокруг движущихся зарядов (магнитное)
- 6. Связана с солнечной активностью (буря)
- 7. Курская магнитная ... (аномалия)
- 8. Коэффициент полезного действия (кпд)
- 9. Полюс Земли (северный)
- 10. Полюс Земли (георгафический)
- 11.П. «Производитель» электричества (генератор)
- 12. Тело способное притягивать к себе железо (магнит)
- 13. Прибор, основной частью которого является электромагнит (телефон)
- 14. Усиливает магнитное поле катушки (сердечник)
- 15. Катушка с сердечником внутри (соленоид)
- 16. Часть двигателя (якорь)

						Э	р	С	Т	е	Д
				П	0	Л	ю	С			
			В	е	Н	е	р	а			
					Я	К	0	б	И		
M	١	а	Г	Н	И	Т	Н	0	е		
				б	У	р	Я				
				а	Н	0	M	а	Л	И	Я
				К	П	Д					

					С	е	В	е	р	Н	Ы	й			
Γ	е	0	Γ	р	а	ф	И	Ч	е	С	К	И	й		
	•	•	•	•	•	•	Г	е	Н	е	р	а	Т	0	р
						М	а	Г	Н	И	Т				
							Т	е	Л	е	ф	0	Н		
						С	е	р	Д	е	Ч	Н	И	К	
					С	0	Л	е	Н	0	И	Д			•
			Я	К	0	р	Ь						•		

2 вариант

- 1. Он впервые обнаружил взаимодействие проводника с током (Эрстед)
- 2. Железная руда (железняк)
- 3. Чем больше сила тока, тем действие электромагнита ... (сильнее)
- 4. Основная часть электродвигателя (якорь)
- 5. Хорошо притягивается магнитом (сталь)
- 6. Очищает зерно от сорняков (сепаратор)
- 7. Линия, соединяющая полюсы магнитной стрелки (ось)
- 8. Прибор (компас)
- 9. Они вызывают магнитную бурю (частицы)
- 10. Электро-...(двигатель)
- 11. Полюса, которые между собой притягиваются (разноименные)
- 12. С их помощью можно обнаружить магнитное поле (опилки)
- 13. Тело, длительное время, сохраняющее намагниченность (магнит)

					Э	р	С	Т	е	Д
			ж	е	Л	е	3	I	Я	К
С	И	Л	Ь	H	е	е				

				Я	К	0	р	Ь					
					"		۲	Ü					
				С	Т	а	Л	Ь					
	С	е	П	а	р	а	Т	0	р				
					0	С	Ь						
			К	0	М	П	а	С					
				ч	а	С	Т	И	ц	Ы			
		Д	В	И	Γ	а	Т	е	Л	Ь			
		р	а	3	Н	0	И	М	е	Н	Н	Ы	е
			0	П	И	Л	к	И					
M	а	Γ	Н	И	Т				•				

№ 4 «Световые явления»

Цель: проверить усвоение знаний учащихся по теме, выявить пробелы в знаниях, для их последующей ликвидации.

П-и: знание **понятий** источники сета: (искусственные и естественные), линзы: (собирающие и рассеивающие), **величин:** оптическая сила линзы, фокусное расстояние: (обозначение, формула, единицы измерения) **явления**: отражение и преломление света.

Д-к: умение строить изображения в рассеивающей и собирающей линзах, пользоваться таблицей синусов и формулами для решения задач, Переводить единицы измерения в систем СИ.

Ц-о: самооценка своих возможностей, интеллектуального развития.

1 вариант

Базовый уровень

- 1. Из перечисленных источников света выпишите искусственные: *Солнце, свеча, звезды, гнилушки, молния, лампы накаливания, Луна, экран телевизора.*
- 2. Выберите законы для явления отражения света:
- а)угол падения равен углу отражения;
- б)угол падения равен углу преломления
- в) отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред;
- г) лучи, падающий и отраженный, лежат в одной плоскости с перпендикуляром, проведенным к границе раздела двух сред в точке падения луча.

- 3. Каким будет изображение в собирающей линзе, если предмет находится между линзой и ее фокусом? Докажите.
- 4. Фокусное расстояние линзы, равно 250 см. Какова оптическая сила линзы?
- 5. Оптическая сила линз у очков, равна 2 дптр. Каково фокусное расстояние линз?

Повышенный уровень

- 6. Построить изображение в рассеивающей линзе, если предмет находится за двойным фокусным расстоянием.
- 7. Определить угол преломления луча в воде, если угол падения равен 35°.
- 8. Луч переходит из воды в стекло. Угол падения равен 60°, Найдите угол преломления. Показатели преломления: вода 1,3; стекло 1,6.

II вариант

Базовый уровень

1. Из перечисленных источников света выпишите естественные:

Солнце, свеча, звезды, гнилушки, молния, лампы накаливания, Луна, экран телевизора.

- 2. Выберите законы для явления преломления света:
- а)угол падения не равен углу отражения;
- б)угол падения равен углу преломления
- в) отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред;

- г) лучи, падающий и отраженный, лежат в одной плоскости с перпендикуляром, проведенным к границе раздела двух сред в точке падения луча.
- 3. Каким будет изображение в собирающей линзе, если предмет находится между линзой и ее двойным фокусным расстоянием? Докажите.
- 4. Фокусное расстояние линзы, равно 25 см. Какова оптическая сила линзы?
- 5. Оптическая сила линз у очков, равна 4 дптр. Каково фокусное расстояние линз?

Повышенный уровень

- 6. Построить изображение в рассеивающей линзе, если предмет находится между фокусом и двойным фокусом.
- 7. Под каким углом должен упасть луч на стекло, если угол преломления равен 10°?
- 8. Луч переходит из воды в алмаз. Угол падения равен 20°. Найдите угол преломления. Показатели преломления: вода 1,3; алмаз 2,4.

Таблица значений синусов

1°	2°	3°	4"	5°	6°	7°	8°	9°	10°
0,017	0.034	0.052	0.069	0.087	0.104	0.121	0.139	0.156	0.173
11°	12°	13°	14°	15°	16°	17°	18"	19°	20°
0.190	0.207	0,225	0.241	0.258	0.275	0.292	0.309	0.325	0.342
21°	22°	23°	24°	25	26°	27°	28°	29°	30°
0.358	0.374	0.390	0.406	0.422	0.438	0.454	0.469	0.484	0,500
31	32°	33°	34°	35°	36°	37°	38°	39°	40°

0.515	0.529	0.544	0.559	0.573	0.587	0.601	0.615	0.629	0.642
41°	42°	43°	44°	45°	46°	47°	48°	49°	50°
0.656	0.669	0.682	0.694	0.707	0.719	0.731	0.743	0.754	0.766
51°	52°	53°	54°	55°	56°	57°	58°	59°	60°
0.777	0.788	0.798	0.809	0.819	0.829	0.838	0.848	0.857	0.866
61°	62°	63°	64°	65°	66°	67»	68°	69°	70°
0.874	0.888	0.891	0.898	0.906	0.913	0.920	0.927	0.933	0.939
71°	72°	73°	74 ⁰	75°	76°	77°	78 ⁰	79°	80°
0.945	0.951	0.956	0.961	0.965	0.970	0.974	0.978	0.981	0.984
81°	82°	83°	84°	85°	86°	87°	88°	89°	90°
0.987	0.990	0.992	0.994	0.996	0.997	0.998	0.999	0.999	1.000
91°	92°	93°	94°	95°	96°	97°	98°	99°	100°

Ключ к контрольной работе № 4 **«Световые явления»**

1 вариант

Базовый уровень

- 1.Искусственные источников света: *свеча, лампы накаливания, экран телевизора.*
- 2. Законы отражения света: *а) угол падения равен углу отражения; г) лучи,* падающий и отраженный, лежат в одной плоскости с перпендикуляром, проведенным к границе раздела двух сред в точке падения луча.
- 3. Изображение в собирающей линзе, если предмет находится между линзой и ее фокусом: *мнимое, увеличенное, прямое (рис.1.)*

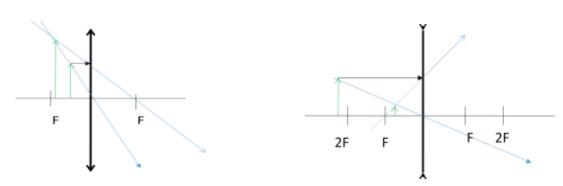


Рис. 1

4. Дано: Решение:

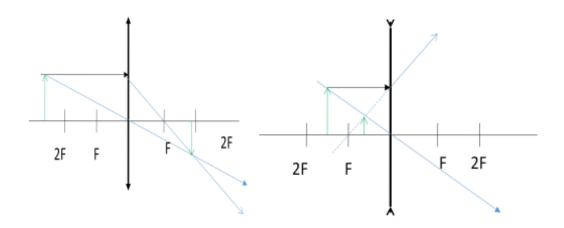
5. Дано: Решение:

Повышенный уровень

- 6. Изображение мнимое, уменьшенное, прямое (рис. 2)
- 7. Дано: Решение:

$$\alpha = 35^{\circ}$$
 $h = \sin \alpha : \sin \gamma$ $\sin \gamma = 0,573 : 1.3 = 0,44$ $n = 1,3$ $\sin \gamma = \sin \alpha : n$ по таблице 0,44 это $\approx \sin 26^{\circ}$ γ -? $\sin \alpha : \gamma = 26,5^{\circ}$

Ответ: у =26,5°


8. Дано: Решение:

$$\alpha = 60^{\circ}$$
 $|\sin \alpha : \sin \gamma = n$ $n = 1,6 : 1,3 = 1,23$ $|\sin \gamma = \sin \alpha : n$ $|\sin \gamma = 0,866 : 1.23 = 0,813$ $|\sin \gamma = \sin \alpha : n$ $|\sin \gamma = 0,866 : 1.23 = 0,813$ $|\sin \gamma = \sin \alpha : n$ $|\sin \gamma = \sin \alpha : n$ $|\sin \gamma = 0,866 : 1.23 = 0,813$ $|\cos \gamma = \sin \alpha : n$ $|\cos \gamma = \sin \alpha :$

II вариант

Базовый уровень

- 1.Естественные источников света выпишите: *Солнце, звезды, гнилушки,* молния.
- 2. Законы преломления света: в) отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред;
- 3. Изображение в собирающей линзе, когда предмет находится между линзой и ее двойным фокусным расстоянием: *действительное*, перевернутое, уменьшенное (рис. 1)

(рис. 1) (рис. 2)

4. Дано: Решение:

F=25 cм
$$|0,25 \text{ м}|$$
 $|0,25 \text{ м}|$ $|0,25 \text{ м}|$ $|0,25 \text{ м}|$ $|0,25 \text{ м}|$ $|0,25 \text{ м}|$

D-? Ответ: D = 4 дптр

5. Дано: Решение:

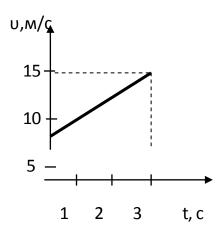
Повышенный уровень

- 6. Изображение в рассеивающей линзе, когда предмет находится между фокусом и ее двойным фокусным расстоянием : мнимое, уменьшенное, прямое (рис. 2).
- 7. Дано: Решение:

 α -? Otbet: $\alpha \approx 16^\circ$

8. Дано: Решение:

$$\alpha=20^\circ$$
 h= $\sin\alpha:\sin\gamma$ n = 2,4:1,3 =1,846 $n_1=1,3$ sin $\gamma=\sin\alpha:n$ sin $\gamma=0,342$: 1,846 = 0,185 $n_2=2,4$ n = $n_2:n_1$ по таблице 0,185 это $\approx\sin 10^\circ$ γ -?

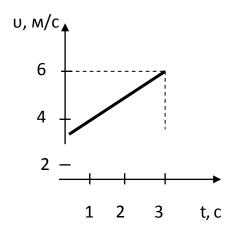

Контрольные работы для учащихся 9 класса

№ 1 «Основы кинематики»

Цель: проверить усвоение знаний учащихся по данной теме. Π -u: понятия материальна точка, движение равномерное и неравномерное. формулы скорости, ускорения, перемещения, обозначение этих величин, их размерность. \mathcal{L} -к: уметь читать графики, выражать неизвестные величины через известные Ц-о: рационально распределять свое время, самооценка и саморазвитие уровня интеллектуальных способностей. 1 вариант 1. В каком случае тело можно считать материальной точкой? А) если надо рассчитать период обращения ИСЗ вокруг Земли; Б) если надо рассчитать Архимедову силу, действующую на тело. В) оба случая правильные 2. Какая из величин скалярная? A) macca; Б) скорость; В) ускорение; Г) путь. 3. Какие из формул соответствуют определению скорости?

A) $(\upsilon - \upsilon_0) / t$;

- Б) υ_o + at;
- B) $^{S}/t$
- Γ) $v_0 t + at^2/2$;
- 4. В каком случае движение тела равномерное?
 - A) поезд в метро движется по прямолинейному пути. Он прибывает на станцию и отправляется от нее через одинаковые промежутки времени;
 - В) спутник движется по окружности вокруг Земли и за любые равные промежутки времени проходит одинаковые расстояния.
- 5. Велосипедист начинает движение из состояния покоя и движется прямолинейно и равноускоренно. Через 10 с после начала движения его скорость становится равной 5 м/с. С каким ускорением двигался велосипедист?
- 6. Дан график зависимости скорости от времени. *Определите путь,* пройденный телом за 3 секунды.


7. За какое время автомобиль, двигаясь из состояния покоя с ускорением 0.6 m/c^2 , пройдет путь 30 m?

2 вариант

- 1.В каком случае тело можно считать материальной точкой?
 - А) если надо определить среднюю скорость самолета по известному

расстоянию и времени;

- B) если надо определить путь, пройденный самолетом за 2 часа при известной скорости его движения .
- 2.Какая из величин векторная?
 - А) время;
 - Б) скорость;
 - В) ускорение;
 - Г) путь.
- 3.Какие из формул соответствуют определению ускорения?
 - A) $(\upsilon \upsilon_0) / t$;
 - Б) υ_o + at;
 - B) $^{S}/t$
 - Γ) $υ_0 t + at^2/2$;
- 4. В каком случае движение тела равномерное?
 - A) автобус движется по прямолинейному пути. Он прибывает к остановке через одинаковые промежутки времени и через равные интервалы отбывает от них;
 - В) автомобиль движется по извилистой дороге и за любые равные промежутки времени проходит одинаковые расстояния.
- 5. При прямолинейном равноускоренном движении скорость катера увеличилась за 10 с от 5м/с до 9 м/с. С *каким ускорением* двигался катер?
- 6. Дан график зависимости скорости от времени. *Определите путь* пройденный телом за 3 секунды.

7. За какое время автомобиль, двигаясь из состояния покоя с ускорением 0.5 м/c^2 , пройдет путь 50 м?

Ключ к/р № 1 по теме: «Основы кинематики»

1 вариант

1. A 2. A, Γ

3. B

4. B

5. Дано: Решение

$$u_{o} = 0 \text{ m/c}$$
 | $a = (u - u_{o}) : t$ | $a = (5 \text{ m/c} - 0 \text{ m/c}) : 10 \text{ c} = t = 10 \text{ c}$ | $= 0.5 \text{ m/c}^{2}$

Найти: а.

Ответ: $a = 0.5 \text{ м/c}^2$

6. Дано: Решение

$$U_o = 5M/c$$
 $a = (U - U_o) : t$ $a = (15 M/c - 5 M/c) : 3 c = 3,3 M/c^2$
 $t = 3 c$ $S = U_o t + (a t^2 : 2)$ $S = 5M/c \cdot 3 c + (3,3 M/c^2 \cdot (3 c)^2 : 2) \approx 30 M$
 $U = 15M/c$

Найти: S. Ответ: S ≈ 30 м

7 . Дано: Решение

$$U_0 = 0 \text{ M/c}$$
 $S = U_0 t + (a t^2 : 2)$ $t = \sqrt{2.30} \text{ M} : 0.6 \text{ M/c}^2 = 0.6 \text{ M/c}^2$ $t^2 = 2S : a$ $t = 10 \text{ C}$

4. B

Найти: t.

Ответ: t =10 c

2 вариант

1.A, B 2. 5,B 3. A

5. Дано: Решение

$$v_0 = 5 \text{ m/c}$$
 | $a = (v - v_0) : t$ | $a = (9 \text{ m/c} - 5 \text{ m/c}) : 10 \text{ c} = t = 10 \text{ c}$ | $v = 9 \text{ m/c}$ |

Найти: a. Ответ: $a = 0.4 \text{ м/c}^2$

6. Дано: Решение

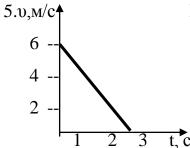
$$U_0 = 2 \text{ M/c}$$
 $a = (U - U_0) : t$ $a = (6 \text{ M/c} - 2 \text{ M/c}) : 3 \text{ c} = 1,3 \text{ M/c}^2.$
 $t = 3 \text{ c}$ $S = U_0 t + (a t^2 : 2)$ $S = 2 \text{ M/c} : 3 \text{ c} + (1,3 \text{ M/c}^2 : (3 \text{ c})^2 : 2) = 12 \text{ M}$
 $U = 6 \text{ M/c}$

Найти: S. Ответ: S = 12 м

7. Дано: Решение

$$U_0 = 0 \text{ m/c}$$
 $S = U_0 t + (a t^2 : 2)$ $t = \sqrt{2.50} \text{m} : 0.5 \text{ m/c}^2 = 0.5 \text{ m/c}^2$ $t^2 = 2S : a$ $t \approx 14 \text{ c}$

Найти: t. Ответ: t ≈14 c


№ 2 «Основы динамики»

1 вариант

Базовый уровень

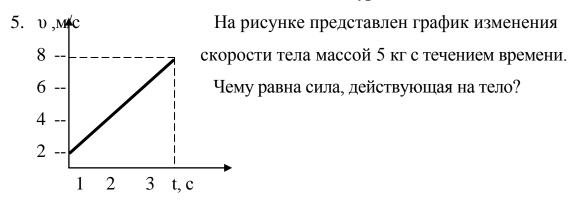
- 1. Яблоко, висящее на ветке, притягивается к Земле с силой равной 3 H. С какой силой яблоко притягивает к себе Землю?
- 2. Определите импульс пули массой 0,01 кг, летящей со скоростью 1000м/с.
- 3. Автомобиль массой 1т двигался по горизонтальной дороге и начал тормозить. Определите ускорение автомобиля, если сила торможения равна 2 кH.
- 4. Вычислите силу притяжения человека массой $80~\rm kr$ к Солнцу. Масса Солнца равна $2\cdot10^{30}~\rm kr$, расстояние от Земли до Солнца составляет $150\cdot10^9~\rm m$.

Повышенный уровень

На рисунке представлен график изменения скорости тела массой 2 кг с течением времени.

Чему равна сила, действующая на тело?

- 6. Вагон массой 30 т, движущийся со скоростью 2 м/с по горизонтальному участку дороги, сталкивается и сцепляется с помощью автосцепки с неподвижной платформой массой 20 т. Чему равна скорость совместного движения вагона и платформы?
- 7. Как изменится сила гравитационного взаимодействия двух тел, если массу одного тела увеличить в 2 раза, а массу другого увеличить в 3 раза?


2 вариант

Базовый уровень

- 1. Разорвется ли веревка, которая может выдержать силу натяжения 100 H, если двое тянут за веревку в разные стороны с силой 60 H?
- 2. Автомобиль массой 1400 кг, движется со скоростью 20м/с. Определите импульс автомобиля.
- 3. Какую массу имеет мяч, если под действием силы 50 H он приобрел ускорение $100 \, \text{m/c}^2$.

4. Вычислите силу притяжения друг к другу вагонов массой 80 т каждый, находящихся на расстояние 10 м..

Повышенный уровень

- 6. Два неупругих шара массой 0,5 и 1 кг, движутся навстречу друг другу со скоростями 7 и 8 м/с. Какова будет скорость шаров после неупругого столкновения?
- 7. Как изменится сила гравитационного взаимодействия двух тел, если массы тел не изменились, а расстояние между телами увеличилось в 2 раза?

Ключ к к/р № 2 «Основы динамики»

1 вариант

Базовый уровень

1. F = -3 H (третий закон Ньютона)

2. Дано:

Решение:

$$m_1 = 0,01$$
 кг $p = m \upsilon$ $p = 0,01$ кг · 1000 м/с $m = 1000$ м/с $p = 10$ кг · m /с $m = 1000$ м/с $m = 1000$ кг · m /с $m = 100$ кг · m /с $m = 1000$ кг · m /с m

3. Дано:

Решение:

$$m_1$$
=1 т | 1000 кг | F = a · m | a =2000H : 1000кг =
 $F = 2 \text{ кH}$ | 2000 H | $a = F : m$ | $= 2 \text{ H/кг (m/c}^2)$ | Ответ: $a = 2 \text{ m/c}^2$.

4. Дано:

Решение:

$$\begin{aligned} m_1 &= 80 \text{ кг} \\ m_2 &= 2 \cdot 10^{30} \text{ кг} \\ r &= 150 \cdot 10^9 \text{ м.} \\ G &= 6,67 \cdot 10^{-11} \text{ m}^2/\text{ кг}^2 \end{aligned} \qquad \begin{aligned} F &= 6,67 \cdot 10^{-11} \text{ m}^2/\text{ кг}^2 \\ 80 \text{ кг} \cdot 2 \cdot 10^{30} \text{ кг} \cdot (150 \cdot 10^9 \text{ m})^2 \end{aligned}$$

Найти: F.

Ответ: F = 0.47 H

Повышенный уровень

5. Дано:

$$v_0 = 6 \text{ m/c}$$
 | F = a · m | a | $= (0 \text{ m/c} - 6 \text{ m/c}) : 2 \text{ c} = -3 \text{m/c}^2$
 $v = 0 \text{ m/c}$ | a = $(v - v_0) : t$ | F = $-3 \text{m/c}^2 \cdot 2 \text{ kg} = -6 \text{ H}$

$$m=2 \text{ K}\Gamma$$

Ответ: F = -6 H

6. Дано:
$$v_1 v_2 v_1! + v_2!$$
 $m_1 = 3000 \, \mathrm{kr}$ $m_1 = 3000 \, \mathrm{kr}$ $m_1 v_2 v_2! + m_2 v_2!$ $m_1 v_1 + m_2 v_2 = m_1 v_1! + m_2 v_2!$ $v_2! = (3000 \, \mathrm{kr} \cdot 2 \, \mathrm{m/c} + 0)$: $m_2 = 2000 \, \mathrm{kr}$ $m_1 v_1 + m_2 v_2 = v_1! + m_2 v_2!$ $m_1 v_1 + m_2 v_2 = v_1! + m_2 v_2!$ $m_1 v_1 + m_2 v_2 = v_1! + m_2 v_2!$ $m_1 v_1 + m_2 v_2 = v_1! + m_2 v_2 = v_1!$

2 вариант

Базовый уровень

- 1. Веревка не порвется, т.к. по третьему закону Ньютона F_1 = F_2 , 60 H= 60 H. а веревка выдерживает 100 H
- 2. Дано: Решение:

$$m_1$$
= 1400 кг $p=m \ v \ p=1400 \ кг \cdot 20 \ m/c=28000 \ кг \cdot m/c.$ Найти: p

Ответ: $p = 28000 \text{ кг} \cdot \text{м/c}$.

3. Дано: Решение:

$$a = 100 \text{ м/c}^2$$
 $F = a \cdot m$ $m = 50 \text{ H} : 100 \text{ м/c}^2 = 0.5 \text{ кг}$ $m = F : a$ Найти: m .

Ответ: m = 0.5 кг

4. Дано: Решение:

Найти: F.

Ответ: $F = 4,27 \cdot 10^{-3} H$.

Повышенный уровень

5. Дано: Решение:

$$v_0 = 2 \text{ M/c}$$
 $v = 8 \text{ M/c}$
 $t = 3 \text{ c}$
 $m_2 = 5 \text{ K}\Gamma$
 $F = a \cdot m$
 $a = (v - v_0) : t$
 $F = -2 \text{ M/c} \cdot 3 \text{ c} = -2 \text{ M/c} \cdot 2 \cdot 5 \text{ K}\Gamma = -10 \text{ H}$

Ответ: F = -10H

6. Дано:
$$v_1 \leftarrow v_2 \quad v_1^! + v_2^! \rightarrow m_1 = 0,5$$
кг $m_1 = 0,5$ кг $m_1 v_1 - m_2 v_2 = m_1 v_1^! + m_2 v_2^! \quad v_1 = 0,5$ кг '7 м/с - 1кг ' 8м/с): $m_2 = 1$ кг $m_1 v_1 - m_2 v_2 = v^! \rightarrow m_1 v_1 - m_$

Ответ: υ $^{!}$ = -3 м/с — шары будут двигаться в противоположную сторону выбранному направлению.

№3 «Механические колебания. Волны. Звук»

Цель: проверить знания учащихся по усвоению понятий: колебания, волны, период, частота, длина волны, громкость и высота звука.

1 вариант

- 1. Чем определяется высота звука?
- 2. Какой величиной характеризуется число колебаний в единицу времени?
- 3. Какую величину измеряют в секундах?

Ответы на вопрос №1,2,3.

- А). Частотой колебаний,
- В). Амплитудой колебаний,
- Б). Длиной волны.
- Г). Среди ответов нет правильного.
- 4. Почему иногда при исполнении оперных арий хрустальные люстры начинают звенеть?

Решить задачи записав: «Дано. Найти. Решение»

- 5. Частота колебаний источника волн равна 0,2 Гц, скорость распространения волны 10 м/с. Чему равна длина волны?
- 6. Длина волны равна 40 м, скорость ее распространения 20 м/с. Чему равна частота колебаний волн?
- 7. Найдите амплитуду, период, частоту колебаний тела, график которого изображен на рисунке 1.

X, M

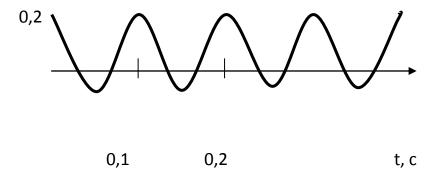


рис.1.

- 8. На каком расстоянии находится преграда, если эхо, вызванное ружейным выстрелом, дошло до стрелка через 4 с после выстрела?
- 9. Ухо человека наиболее чувствительно к частоте 355 Гц. Определите для этой частоты длину волны в воздухе.
- 10. Какой жесткости следует взять пружину, чтобы груз массой 0,1 кг совершал свободные колебания с периодом 0,3 с?

2 вариант

- 1. Чем определяется громкость звука?
- 2.Какой величиной характеризуется промежуток времени в течении которого совершается одно полное колебание?
- 3. Какую величину измеряют в Герцах?

Ответы на вопрос № 1,2,3-

- А). Частотой колебании.
- В). Амплитудой колебаний.
- Б). Длиной волны.
- Г). Среди ответов нет правильного.

4. Два человека прислушиваются, надеясь услышать шум приближающегося поезда. Один из них приложил ухо к рельсам, другой - нет. Кто из них раньше узнает о приближении поезда и почему?

Решить задачи записав: «Дано. Найти. Решение»

- 5. Длина волны равна *0,8* м, скорость её распространения 0,5 м/с. Чему равен *период* колебаний?
- 6. Волна распространяется со скоростью 6 м/с при частоте 5 Гц. Какова длина волны?
- 7. Найдите амплитуду, период, частоту колебаний тела, график которого изображен на рис 2.

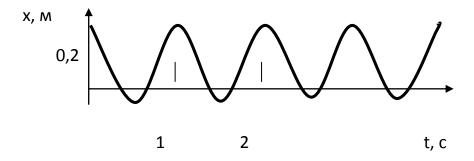


рис.2.

- 8. Расстояние между соседними гребнями волн 8 м. Чему равен период и частота колебаний, если скорость её распространения 4 м/с?
- 9. Во время грозы человек услышал гром через 15 с после вспышки молнии. Как далеко от него произошел разряд?
- 10. Какова длина маятника, совершающего колебания с частотой

0,5 Гц?

Критерии оценивания:

«3» 1-6 заданий

«4» 7-8 заданий

«5» 9-10 заданий

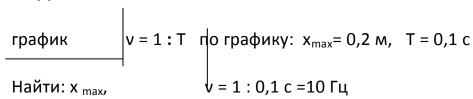
Ключ к/р №3 «Механические колебания. Волны. Звук»

1 вариант

1. A 2. A 3. Γ

4. ... потому, что частота колебаний звуковых волн совпадает с частотой колебаний люстр, возникает явление резонанса

5. Дано: Решение:


$$ν = 0.2 Γμ$$
 $λ = υ : ν$ $λ = 10 μ/c: 0.2 Γμ = 50 μ $υ = 10 μ/c$$

Найти: λ Ответ: λ = 50 м

6. Дано: Решение: $\lambda = 40 \text{ м} \qquad \lambda = \text{U}: \text{V} \qquad \text{V} = 20 \text{ м/c}: 40 \text{ м} = 0,5 \text{ Гц}$ $\text{U} = 20 \text{ м/c} \qquad \text{V} = \text{U}: \lambda$

Найти: v Ответ: v = 0,5 Гц

7. Дано: Решение:

v, T Ответ: $x_{max} = 0.2 \text{ м}$, T = 0.1 c, v = 10 Гц.

8. Дано: Решение:

t = 4 c
$$v = s : t/2$$
 $s = 330 \text{ m/c} \cdot 4/2 \text{ c} = 660 \text{ m}$ $v = 330 \text{ m/c} \cdot t/2$

Найти: s — Ответ: s = 660 м

9. Дано: Решение:

$$v = 355$$
 Гц $\lambda = v : v$ $\lambda = 355$ Гц: 330 м/с = 1,08 м $v = 330$ м/с

Найти: λ Ответ: λ = 1,08 м

10. Дано: Решение:

m = 0,1κr
$$T=2\pi Vm:k$$
 $k = (40 \cdot 0,1):9 = 0,4$ H/κr $T=3$ c $k=4\pi^2 m:T^2$

Найти:k

Ответ: k = 0.4 H/кг

2 вариант

- 1.B 2. Γ 3. A
- 4. О приближении поезда быстрее узнает человек, приложивший ухо к рельсам, т.к. скорость звука в стали 500 м/с, а в воздухе 330 м/с.

5. Дано: Решение:

$$\lambda = 0.8 \text{ M}$$
 $\lambda = \text{U} \cdot \text{T}$ $T = 0.8 \text{ M} : 0.5 \text{ M/c} = 1.6 \text{ c}$ $U = 0.5 \text{ M/c}$ $T = \lambda : \text{U}$

Найти: Т

Ответ: Т = 1,6 с

6. Дано: Решение:

$$v = 5 \ \Gamma \mu$$
 $\lambda = 0 : v$ $\lambda = 6 \text{м/c}: 5 \ \Gamma \mu (1/c) = 1,2 \text{ м}$ $\nu = 6 \text{ м/c}$

Найти: λ

Ответ: λ = 1,2 м

7. Дано: Решение: график v = 1 : T по графику x_{max}= 0,4 м T = 1 с Найти: x_{max} , v = 1 : 1 c = 1 Гц,

v, T Ответ: $x_{max} = 0.4$ м, T = 1 с, v = 1 Гц

8. Дано: Решение:

$$λ = 8 \text{ M}$$
 $v = 4 \text{ M/c}$
 $v = 0.5 \text{ (1/c) } \text{ Γ}$
 $v = 1 : 0.5 \text{ Γ}$
 $v = 2 \text{ C}$

Найти: T, v T = 1: v

Ответ: $v = 0.5 \Gamma \mu$. T = 2 c

9. Дано: Решение: t = 15 c v = s : t s = 330 m/c t = 15 c $s = v \cdot t/2$

Найти: s -? Ответ: s = 5 км

10. Дано: Решение:

$$v = 0.5$$
 Гц $T = 2\pi V/:g$ $T = 1: 0.5 = 2 c$ $g = 9.8 \text{ m/c}^2$ $I = T^2g:4\pi^2$ $I = (4 \cdot 9.8): (4 \cdot 9.8) = 1 \text{ м}$

Найти: / T= 1 : v Ответ: / = 1 м

№4 по теме «Строение атома и атомного ядра»

1 вариант

Опишите состав атома химического элемента порядковый номер которого № (выберите сами). Можно заполнить таблицу:

Химический элемент	
Порядковый номер	
Относительная атомная масса	
Число электронов	
Число протонов	
Число нейтронов	
Число нуклонов	

- 2. Что вы знаете об α -излучении?
- 3. Во что превращается уран $_{92}$ U 238 после одного $\,\alpha$ -распада и двух $\,\beta$ распадов?
- 4. Дописать недостающие обозначения в следующих ядерных реакциях:

$$_{30}$$
 Zn 65 + $_{0}$ n 1 \rightarrow ? + $_{2}$ He 4

? +
$$_{1}$$
H 1 \rightarrow $_{12}$ Mg 24 + $_{2}$ He 4

5. Вычислите энергию связи ядра алюминия $_{13}$ AI 27 , если М я = 26,98146 а.е.м.

2 вариант

Опишите состав атома химического элемента порядковый номер которого № (выбор за вами). Можно заполнить таблицу:

Химический элемент	
Порядковый номер	

Относительная атомная масса	
Число электронов	
Число протонов	
Число нейтронов	
Число нуклонов	

- 2. Что вы знаете о β -излучении?
- 3. Во что превращается изотоп тория $_{90}$ Th 234 после одного β -распада и двух α –распадов?
- 4. Дописать недостающие обозначения в следующих ядерных реакциях:

$$_{7}$$
 N 14 + $_{1}$ H 1 \rightarrow ? + $_{0}$ n 1

$$_{13}AI^{27} + \gamma \rightarrow _{11} Na^{23} + ?$$

5. Вычислите энергию связи ядра алюминия $_3Li^7$, если М я = 11,6475 a.e.м.

Ключ контрольной работы №5 по теме ««Строение атома и атомного ядра»»

I вариант

- 1. Опишите состав атома химического элемента.
- 2. Что вы знаете об $\, \alpha \,$ -излучении?

	α	β
Заряд	+	-
Что представляет собой	Ядро гелия	Поток электронов
Символ	₂ He ⁴	₋₁ e ⁰
Отклонение в эл.магн поле	да	да

3.
$$\alpha$$
 –распада: $_{92}U^{238} \rightarrow _{90}Th^{234} + _{2}He^{4};$

$$\beta$$
– распад: $_{90}\text{Th}^{234} \rightarrow _{91}\text{Pa}^{234} + _{-1}\text{e}^{0};$

$$\beta$$
- распад: $_{91}$ Pa $^{234} \rightarrow _{92}$ U $^{234} + _{-1}$ e 0 ;

4.
$$_{30}Zn^{65} + _{0}n^{1} \rightarrow _{28}Ni^{62} + _{2}He^{4}$$

$$_{13}AI^{27} + _{1}H^{1} \rightarrow _{12}Mg^{24} + _{2}He^{4}$$

$$m_p=1,00728 \text{ a.e.m.}$$
 $E_{cB} = \Delta m \cdot c^2$

$$m_n=1,00866 \text{ a.e.m.}$$
 $\Delta m = (Z \cdot m_p + N \cdot m_n) - M_g$

c=931,5'MəB/a.e.m.
$$E_{cB} = [(Z m_p + Nm_n) - M_g] c^2$$

N=14
$$=$$
 218,36223 M₃B.

$$Mя=26,98146a.e.м.$$
 Ответ: $\Delta m=0,23442 a.e.м.=3,89 \cdot 10^{-28}$ кг,

Есв. -? E св = 218 МэВ =
$$3.5^{\circ}10^{-11}$$
 Дж

II вариант

- 1. Опишите состав атома химического элемента
- 2. Что вы знаете о β-излучении? (см.таблицу в 1 варианте)
- 3. β распад: $_{90}$ Th $^{234} \rightarrow _{91}$ Pa $^{234} + _{-1}e^{0}$;

$$\alpha$$
 –распада: $_{91}$ Pa 234 \rightarrow $_{89}$ Ac 230 + $_{2}$ He 4 ;

$$\alpha$$
 –распада: $_{89}$ Ac 230 \rightarrow $_{87}$ Fr 226 + $_{2}$ He 4 ;

4. Дописать недостающие обозначения в следующих ядерных реакциях:

$$_{7}N^{14} + _{1}H^{1} \rightarrow _{8}O^{14} + _{0}n^{1}$$

$$_{13}AI^{27} + \gamma \rightarrow _{11}Na^{23} + _{2}He^{4}$$

5. Дано: Решение:

$$m_p = 1,6724.10^{-27} \text{Kr} \left[E_{CB} = \Delta m \cdot c^2 \right]$$

$$m_n = 1,6748 \cdot 10^{-27} \text{Kr} \left[\Delta m = (Z \cdot m_p + N \cdot m_n) - M_g \right]$$

$$c = 3.10^{8} \text{ M/c}$$
 $E_{CB} = [(Z m_p + Nm_n) - M_s] \cdot c^2$

$$Z = 3$$
 $E_{CB} = [(3.1,6724.10^{-27} + 4.1,6748.10^{-27}) -11,6475.10^{-27}]$

$$N = 4$$
 $9.10^{16} = 0.6201.10^{-11} \text{Дж} = 62.10^{-13} \text{Дж}$

Мя=11,6475
$$10^{-27}$$
кг Ответ: Е св = $62^{\cdot}10^{-13}$ Дж

Ecb.-?